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Introduction 
Increasing air travel demand calls for improvements in aviation safety. Leveraging 
comprehensive accident data, this project aims to provide data-driven insights that can help 
policymakers, regulators, and airlines design more effective preventive measures and risk 
mitigation strategies. The analysis focuses on understanding which factors contribute to the 
severity of aviation accidents, indicated by aircraft damage, injuries, and casualties, as well as 
examining patterns in the number of aviation accidents over time.  
 
Data collection and cleaning 
Our data comes from the National Transportation Safety Board (NTSB) database of aviation 
investigations. The full database has ~175,000 investigations from 1962 to present. A more 
recent dataset has ~30,000 investigations from 2008 to present with far more data. 
Investigations include event data (time, location, weather, flight phase, etc.), aircraft data (type, 
make, specs, injury counts, damage, etc.), and investigation findings. We dropped data from 
minor incidents, foreign investigations, and recent events (since 2022) because of high rates of 
missing data. 
 
We downloaded a .mdb database and exported the tables into separate .csv files using the 
mdb-tools package. The resulting .csv files had data variously at the event level, aircraft level, or 
sub-aircraft level. We created a merged dataset with one entry per aircraft; to do this we 
propagated event-level data to the aircraft(s) involved and aggregated sub-aircraft level data. 
 
We dropped columns with over 20% missing data in the training set. To handle remaining 
missing values, we did a combination of dropping rows, imputing numerical variables, and 
creating an “other/unknown” category for categorical variables. Many categorical variables had 
a large number of unique values. To simplify the variables, we manually combined similar 
categories for some categorical variables and replaced all categories appearing with <1% 
frequency (in the training set) with “other/unknown.” We then applied one-hot encoding. 
 
We modeled three target variables:  

● Proportion of people onboard fatally injured 
● Proportion of people onboard seriously injured 
● Damage to aircraft (minor / serious / destroyed) 

We used injury proportions–rather than counts–to give equal weight to aircraft of all sizes. Of 
note, the injury proportions were concentrated around 0 and 1 and the damage data were highly 
imbalanced (~90% ‘serious’). 
 
 
 
 



Modeling approach 
We performed a 60:20:20 train/validation/test split, stratified by damage category. To avoid data 
leakage, the split was grouped so that multiple aircraft with the same event data were placed in 
the same set. 
 
For each target, we trained several ensemble models: Bagging, RandomForest, ExtraTrees, 
XGBoost, HistGradientBoost. We tuned hyperparameters via grid search cross-validation on the 
training data to minimize MSE for regression and maximize macro-averaged F1 for classification 
due to high class imbalance. We then chose between the tuned models by their performance on 
the validation set, and retrained our chosen model on the combined train and validation sets. 
 
Results 
For predicting proportions of both fatal injuries and serious injuries, the HistGradientBoost 
model had the lowest validation MSE (with different hyperparameters for fatal and serious 
injuries). When deployed on the test set, the models had MSEs of 0.114 and 0.075 for fatal and 
serious injuries respectively. By comparison, a naive baseline (predicting the training sample 
mean) had MSEs of 0.133 and 0.077.  Thus, our fatal injury model constituted a 14% 
improvement over the naive estimator, and the serious injury model a 2.5% improvement over 
naive estimation. 
 
The ExtraTrees model had the highest macro-averaged F1 score on the validation data. When 
deployed on the test set, it had a macro-averaged F1 score of 0.459. By comparison, a naive 
baseline (predicting the majority class) had a macro-averaged F1 score of 0.316.  
 
Conclusions and Future Directions 
Taken together, our models all appear to indicate that the features included across the various 
NTSB datasets are not particularly predictive of the severity of an aircraft incident, nor the 
proportion of serious and fatal injuries in aircraft involved in accidents, only contributing 
marginally over the naive predictors. 
 
However, this analysis nonetheless generates important takeaways and actionable insights.  
First, and perhaps most importantly, this analysis illustrates the need for more thorough data 
collection and entry going forward if the NTSB data is to be used to predict aviation accident 
severity. One common theme that we encountered throughout this project was that we had a 
selection problem; for many variables, missingness was strongly related to the type and severity 
of accident - for example, many features were not collected in accidents in which the aircraft 
were destroyed. Some level of this inconsistency is, then, inevitable, but regulators and 
policymakers may want to pursue initiatives which would result in more consistent data entry 
across the board when possible. 
 
Our results still do point toward certain contributors to accident severity, despite their weak 
predictive power.  The classification analysis suggests that the number of days since inspection 
can be an important predictor of aviation accident severity.  While our analysis is agnostic to the 
direction of this relationship, regulators could seek to reduce aviation accident severity by 



initiating investigations into whether or not increased levels of inspections could serve to 
mitigate the occurrence and severity of aviation accidents.  
 
Finally, our project posits that if existing data makes predicting aviation accident severity 
difficult, we may still be able to predict aviation safety by shifting our focus from individual 
aviation accident severity to the number of aviation accidents over time.  Thus, we include a 
simple LSTM time-series model as a proof-of-concept that there may be promise in predicting 
the number of accidents in a given month.  The LSTM model nets a mean absolute error of 
16.65 – a baseline upon which future time series may further improve upon. 


