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Introduction - There are more than 5 million motor vehicle crashes (MVCs) in the United States 
every year. While some contributing factors are out of the hands of policy makers, others are 
not. In our investigation, we seek to better understand the relationship between the built 
environment of a community and the number and severity of crashes in that area. Features of 
the built environment (which include roads, crosswalks, bike paths, and traffic signals) can be 
augmented or replaced. By modeling the relationship between built environment features and 
frequency and severity of MVCs, we can better anticipate the number of severe MVCs a 
community may expect in certain areas. Such knowledge could help local governments and city 
planning organizations better anticipate and respond to MVCs with emergency services and 
other resources, or consider ways to lower the crash density of existing and future regions, thus 
making their communities safer. 

Data sets - We used two data sets, one for motor vehicle crashes, and another for features of 
the built environment. 

The motor vehicle crash data comes from US Accidents (2016-2023) on Kaggle. The data set 
contains approximately 7.7 million accident records spanning the contiguous United States from 
2016 to 2023, scraped from Bing and MapQuest Traffic APIs and augmented with data from 
various entities, such as government agencies. The data set has 46 columns, with variables 
including accident location, time, and severity, as well as many categorical variables describing 
weather conditions, visibility conditions, and proximity to points-of-interest like junctions, traffic 
stops, roundabouts, etc. 

The data about the built environment comes from the Smart Location Database from the EPA. 
The data set contains data for every census block group in the United States, with over 200,000 
rows. The data set has over 90 variables across various categories such as housing density, 
diversity of land use, neighborhood design, destination accessibility, transit service, 
employment, demographics, etc. Notably, the data set comes not as a CSV file, but as a file 
geodatabase. 

Data augmentation and processing - Before we could begin, we needed to combine our two 
data sets. One possible approach would be to add built environment variables from the EPA's 
Smart Location Database to each motor vehicle crash in the Kaggle data set. Such an approach 
would mean that our model would be observing features of crashes, then predicting the severity 
of the crash. However, this approach does not address the likelihood of a crash happening; it 
addresses only how the built environment attenuates severity, given that a crash already 
happened. 

Thus, we adopted a different approach: Instead of attaching variables from the Smart Location 
Database to each crash from the Kaggle data set, we aggregated the crashes by census block 
group. With this approach, our model would observe features of a census block group, then 
predict the number of severity-weighted crashes that occurred during the timeframe when the 
crash data was collected. 

 

https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents
https://www.epa.gov/smartgrowth/smart-location-mapping


 

To engineer our target variable, we took the severity variable from Kaggle to create a 
"severity-weighted" crash, so that our prediction model would weigh severe crashes more 
heavily than light crashes. We then divided by population density. 

To merge the two data sets, we used GeoPandas to take the latitude-longitude data from each 
motor vehicle crash and convert those coordinates to the same Coordinate Reference System 
used by the Smart Location Database. We could then determine the census block group in 
which each crash occurred by using spatial join in GeoPandas. 

We cleaned the data of rows with nonsensical or extreme data (e.g. census block groups with 
zero population, zero land area, zero roads, etc.). We chose to exclude census block groups 
with fewer than 4 crashes, since a census block group with fewer than 4 crashes from 2016 to 
2023 probably has negligible motor vehicle activity. We also excluded crashes from the year 
2020, since driving and pedestrian activity during that year was impacted by the COVID-19 
pandemic lockdown. 

After cleaning our data, we performed log transformations on highly skewed variables, which 
increased their interpretability. 

Next, we sought to reduce our number of features to fewer than 20. We began by highlighting 

features that had a moderate correlation (roughly 0.3 < |  | < 0.8 ) with our target variable, as 𝑅2

indicated by correlation heat maps. We eliminated features by selecting between highly 
correlated variables to reduce multicollinearity. 

Model selection and results - After performing an 80/20 train-test split of our data set and 
spending some time on exploratory data analysis, we began to train some models and compare 
their performances using root mean squared error (RMSE) as a performance metric. We started 
with Multiple Linear Regression as a baseline model and went on to consider Lasso and Ridge 
regression, Random Forest Regression and XGBoost Regression. For each of these models we 
used 5-fold cross validation while tuning hyperparameters in an attempt to minimize overfitting. 
In the end, XGBoost performed the best, scoring a RMSE of 0.552 on the training data. We 
chose to use this tuned XGBoost model as our final model, and found that it scored a RMSE of 
0.547 on the test data. 
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