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e More specifically, the Columbia Basin
lies in an arid lowland area, making

groundwater level prediction crucial to

assist with water supply monitoring.




Why Spokane?

Spokane county boasts the second-largest
number of farms in Washington state, with a total Stakeholders
of 2,425 in 201/. Additionally, the availability of
consistent data over several years from a cluster
of wells makes Spokane an ideal location for
modeling purposes. The area’s excellent weather a Spokane residents.
and river data further contribute to its appeal.

e Spokane businesses.

{} e Local government agencies.
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Datasets

We selected four groundwater
monitoring wells in the Spokane

area with differing lithographies.

Data was gathered from various
government and commercial
sources.
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Dataset Processing

Data prior to 2006 was dropped due to
missing values.

Wind Gust & Gage Height missing data
between 2006 - 2017 were replaced with
zero and last non-missing values
respectively.

Key Features includes: date, gage_ht,

wind_avg and gust_avg

Engineered Precipitation data with 45 days
lag for better correlation with target
feature: Water level

discharge_cfs, prcp, temp_avg, hum_avg,
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e Convolutional Neural Network

Recurrent Neural Network
(Long Short Term Memory)

Wrapped in custom Scikit-Learn estimators/transformers
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Linear Regression
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Hyperparameters were tuned
using grid search to enhance
performance.
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e Number of convolutional layers.
Kernel and filter sizes.
Number of dense layers.
e fctual (Training) e Units in each dense |ayer.
Actual (Test) B h .
Prediction (Test) . atC SlZe
e | earning rate

e Early stopping threshold.
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Hyperparameters were tuned using
grid search to enhance performance.
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R e s u I t S We held out the last year of groundwater level data for each of our wells.
This is how our models performed on that holdout set. (Lower is better.)

APK309 RMSE for Each Well
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Baseline 3.206 2.372 .
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Linear 1732 1587

Regression
3

CNN 1.981 1.756 2 e

LSTM 1.118 0.914
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The avallability of weather and river =
data allows us to make predictions
beyond the continuous well data, End of training dat\a‘

and we can evaluate them on a
limited number of data points.
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Streamlit App

We integrated our models into Streamlit to
allow users interactive insights across four
selected wells.

https://erdosgroundwaterforecast.streamlit.app/



https://erdosgroundwaterforecast.streamlit.app/

a Improve the web app

Future

e Wells at other locations

e Additional parameter tuning

a Seasonal ARIMA
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