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OBJECTIVES

 Predict house prices incorporating
traditional and non-traditional features
using machine learning

 Build a web application to predict the

house price for user input feature values




Why King County ?

Land area: 2126 sq. mi.
Water area: 180.5 sq. mi.

i Population density: 1066 people per
- e square mile (very high).

-akewood Puyallup ;
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o Cost of living index: 111.7 (more than
: Al average, U.S. average is 100)

Stakeholders

» Presence of many companies such as Boeing, Amazon,
Google, Microsoft, etc.

- Families looking to settle down in King

County, WA * Scenic parks, Golden Garden Beach
- Real estate agents trying to give . . .
estimates to housing prices » Historic places such as Pike Place Market, Space-needle

. Local government agencies



DATA SET
REDFIN

Original data set has 7066
rows and 31 columns.

School and Crime ratings
were added

DATA CLEANING

« Removed unnecessary columns and
rows with missing values.

 Add new columns

o Age, Log_price

Age = 2024 — YEAR_BUILT

Log_ price = Log(PRICE)

e Cleaned data set has 4700 rows and
19 columns (5 categorical and
14 numerical)



EXPLORATORY DATA ANALYSIS
PRICE DISTRIBUTION

Minimum: 49000
Mean: 1505699
Median: 998975
Maximum: 70000000
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Correlation Heatmap Loo
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Primary tool: seaborn
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MORE PLOTS

$
Primary tool: seaborn "’ l ¢
Boxplot on the right shows the g — é % ¢
distribution of log_price for the categorical . % ?
variable property type. N
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1e6 Average Price for Each Property Type

MORE PLOTS
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FEATURE ENGINEERING

 Delete outliers based on price.

PROPERTY TYPE
« One hot encoding on PROPERTY Single Family Residential 3030
Townhouse 430
TYPE column Condo/Co-op 160
Multi-Family (2-4 Unit) 63
Multi-Family (5+ Unit) 45
Mobile/Manutfactured Home 32



FINAL DATA SET

Data columns (total 16 columns):

#  Column Non-Null Count
oo e 15 features to predict House
@ BEDS 3759 non-null . .

1 BATHS 3759 non-null Price (in ]()g scale)
2  SQUARE FEET 3759 non-null

3 LOT SIZE 3759 non-null

4  zipcode 3759 non-null

5 LATITUDE 3759 non-null

b LONGITUDE 3759 non-null

7  Bayes_RatingSchool 3759 non-null

8 crime_ percentage 3759 non-null

g Age 3759 non-null

18 Single Family 3759 non-null

11 Townhouse 3759 non-null

12 Condo 3759 non-null

13 Multi Family4 3759 non-null

14 Multi FamilyS 3759 non-null

15 log price 3759 non-null



MODELING

1.The baseline model — Average of the House Prices (log scale)
2.K — Nearest Neighbors

3.Multiple Linear Regression

4.Decision Tree

5.Random Forest
6.XGBoost

Used 5 — fold cross validation on the training set and RMSEs
were computed for the predicted price in log scale.



MODEL TUNING RMSE for Different Models on the Training Set

0.25 1

 Used a grid search-based approach
to find the best set of parameters
for KNN, Decision Tree, Random
Forest, and XGBoost.

0.20 1
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0.10 1

Root Mean Squared Error (RMSE)

» Best model, XGBoost gives RMSEs,
00.0954 on training set

0.05 1

00.1003 on testing set 000
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IMPORTANT FEATURES OF XGBOOST

Feature importance
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HISTOGRAMS FOR PREDICTED VS TRUE

60

LOG PRICE

Histogram for predicted log price and True log price on the testing set
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RESIDUAL PLOT

Residual plot

residual
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WEB APPLICATION

 Using our final model, we built a
simple web application on Streamlit
that takes in user inputs (relevant to
our model) and predicts the house

price. W
Streamlit

« The app is publicly available
at https://erdos-datascience-may2024-
realestate-project-
nevrbzjn2sh2zgsrc.streamlit.app/
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CONCLUSIONS

 Overall, all models did improve from the baseline model and did well on predicting the
price.

e Contribution of non-traditional features are similar to some of the traditional features.

FUTURE WORK

- Extend the study for other states.
 Incorporate more relevant features such as
= whether the house has experienced flooding,
= has mold issues,
= the quality of construction materials,
= the floor plan, and
= whether fixtures and appliances have been recently updated.
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