
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

2021 Fall Data Science Program 
 
 
 
 
 

 

 
 
 
 
 

 
 
 

 
  

Holowinsky, Roman W.



 1 

Lesson Contents 
 
1. A Broad Overview 

2. Supervised Learning Framework 

3. Simple Linear Regression 

4. Train/Test Splits 

5. Validation Sets 

6. Cross-Validation 

7. Multiple Linear Regression 

8. Regression: Categorical Variables and 

Interactions 

9. Shallow and Deep Copies in Python 

10. Polynomial Regression and Nonlinear 

Transformations 

11. The Bias-Variance Tradeoff 

12. Scaling Data 

13. Basic Pipelines 

14. Regularization, Ridge and Lasso Regression 

15. Practicing Cross-Validation 

16. Some Regression Model Selection Techniques 

17. Interpreting Regression 

18. Interval Estimation 

19. Residual Plots 

20. Weighted Linear Regression 

21. Train/Test Splits for Classification 

22. k-Nearest Neighbors Classifier 

23. The Confusion Matrix, Precision, and Recall 

24. Logistic Regression 

25. The ROC Curve 

26. Bayes’ Rule Reminder 

27. Linear Discriminant Analysis (LDA) 

28. Quadratic Discriminant Analysis (QDA) 

29. Naïve Bayes Classifier 

30. Multiclass Classification Metrics 

31. Principal Component Analysis I 

32. Principal Component Analysis II 

33. Principal Component Analysis III 

34. Linear Support Vector Machines 

35. General Support Vector Machines 

36. Decision Trees 

37. Random Forests I 

38. Random Forests II 

39. Ensemble Learning I – Voter Models 

40. Ensemble Learning II – Bagging and Pasting 

41. Ensemble Learning III – AdaBoost 

42. Ensemble Learning IV – Gradient Boosting 

43. Ensemble Learning V – XGBoost 

44. Ensemble Learning Summary 

45. Perceptrons 

46. The MNIST Data Set 

47. Multilayer Neural Networks 

48. keras 

49. Introduction to Convolutional Neural Networks 

50. Future Directions with Neural Networks 

51. t-Distributed Stochastic Neighbor Embedding 

52. What is Clustering? 

53. k-Means Clustering 

54. Hierarchical Clustering

 
  



 1 

1. A Broad Overview 
Lecture Notebooks/Introduction/2. A Broad Overview.ipynb 

 
Focused on handling two kinds of data problems – supervised and unsupervised learning 
 
Supervised Learning: Given a set of labels y and a set of features X (also called predictors or input data), build 
an algorithm/model that will predict y for a set of X 

• Ex: Predict if a stock’s price will increase based on its pre-trade characteristics 
 
Unsupervised Learning: Using a set of features X, with no corresponding label, learn something “meaningful” 
about the data 

• Ex: Identifying customer types based on their purchasing habits 
• We’ll be getting to this later in the program, focusing first on supervised learning 
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2. Supervised Learning Framework 
Lecture Notebooks/Supervised Learning/1. Supervised Learning Framework.ipynb 

 
The framework: There is some variable y that we are interested in predicting/explaining and a collection of m 
features stored in an !-dimensional variable ". We are going to do our best to identify a statistical model that 
takes the form # = %(") + ). 

• %(") is considered the systematic information that X gives about y and can be considered the signal that 
X provides about y, while ) is random noise 

• A simple example model would be the linear relationship # = " + ) 
 
In practice we cannot precisely obtain % to arbitrary precision due to the presence of random noise/errors, but 
we can obtain estimates for the model %* that are quite close 

• When fitting a linear relation, “close” might be quantified using low mean square error 
• In general one may select different metrics depending on the problem at hand 

 
The two main goals for supervised learning are making predictions and making inferences 
 
When making predictions, the goal is to produce a model/algorithm using training data that can take in new 
observations and predict an output for them 

• The aim here is to make predictions that match the actual values as much as possible 
 
When making inferences, the goal is to produce a model that helps explain the relationship, if any, between y 
and X 

• Here the aim is to understand how changes in X impact y 
• One example of the “best” estimate in this setting is finding the model that explains as much of the 

variance in y using a minimal number of X’s features 
 
Depending on the kind of data encoded in y, there are two kinds of supervised learning problems: 
 
Regression problems: These are problems where y is a quantitative variable, something counted or measured. 
Some examples include a person’s height or weight, the number of sales made by a company on a given day, 
and the lifespan of a light bulb. 
 
Classification problems: These are problems where y is a qualitative variable, data which are measures of 
“types” and may be represented by a name, symbol, or a number code. Some examples would be whether a 
tweet contains misinformation, which digit is represented in an image, or whether an ad buy on a website will 
result in an app download. 
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3. Simple Linear Regression 
Lecture Notebooks/Supervised Learning/Regression/1. Simple Linear Regression.ipynb 

 
We’ll start with a simple linear model of the form # = %(+) + ) = β! + -" + ), and assume that error ) has 
mean zero and is independent of % 

• In order to obtain our estimate %* we need to estimate -*! and -*", which we will do by minimizing a loss 
function 

 
Mean Square Error: This is the loss function we will minimize to obtain %* and is given by 
 

./0 = 1
234## − %*(+#)6

$
%

#&"

= 1
237## − -*! − -*"+#8

$
%

#&"

 

 
Using a little bit of calculus, we find that the -*! and -*" values that minimize MSE are 
 

-*! = #9 − -*"+̅ 
 

-*" =
∑ (+# − +̅)(## − #9)%
#&"

∑ (+# − +̅)$%
#&"

= cov(+, #)
var(+)  

 
Performing linear regression with sklearn 

• This is a fairly simple and easy to code model that you could handle any number of ways, but we’ll use 
sklearn because it’s a useful tool for a lot of other models we’ll get to later 

• Here we’ll assume we’ve already imported our data into a pandas dataframe and done a train/test split 
such that we have a df_train with columns for the y and x data we want to fit 

o We’ll talk about more about train/test splits in the next lesson 
 
Once a model has been obtained, we can compare it to the null model where we simply predict that all X values 
will yield the average value #9 

• If the model is a good descriptor of the data, then fit MSE should be significantly lower than that of the 
null model, as is the case in the associated notebook for this lesson 

 
Sample Code: 

#	first	need	to	import	the	package	
from	sklearn.linear_model	import	LinearRegression	
	

#	now	make	the	model	object	
slr	=	LinearRegression(copy_X=True)	
#	actually	fit	the	model	
slr.fit(df_train[‘x_data’].values.reshape(-1,1),	df_train[‘y_data’].values)	
	

#	get	the	actual	β^_0	and	β^_1	estimates	
print(“beta_0_hat	is”,	slr.intercept_)	

print(“beta_1_hat	is”,	slr.coef_[0])	

	

#	prepare	to	plot	the	fit	model	
x_fit	=	np.linspace(plot_min,		plot_max)	
y_fit	=	slr.predict(x_fit.reshape(-1,1))	
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Notes on the above code: 

• Recall that df_train.y_data and df_train[‘y_data’] are interchangeable as long as the column label 
doesn’t have a space (in which case you’d need to use the bracket/string method) 

• The copy_X=True option is used to make sure that python makes a copy of the data to ensure that it 
doesn’t modify the original dataframe while fitting 

o This is often a non-issue, but it’s good to err on the safe side 
• The reshape(-1,1) is needed because sklearn expects the X input to be a 2D matrix and we’re working 

with 1D data here 
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4. Train Test Splits 
Lecture Notebooks/Supervised Learning/2. Train Test Splits.ipynb 

 
For almost all problems we will want to perform a train/test split to help mitigate issues with overfitting and 
provide a mechanism by which to more robustly validate our modeling results 

• Without doing so you may be able to build a seemingly perfect model, but it would likely fail in 
extraordinary fashion when extrapolated beyond your initial data set 

 
To achieve this, we split our data set into two sets 

• The training set encompasses the majority of your data and is what you will use to train your model 
• The test set is the smaller of the two sets, the data that you hold out until the end of the model building 

process as a final check 

  
 
The primary assumption underlying this technique is that the probability distribution underlying your sample is 
the same as the distribution underlying the data out in the world 

• In theory, performing a random split of the data into a training set and a test set ensures that the 
distributions are the same for both sets, assuming you have enough observations 

 
Sample Code: 

#	import	train_test_split	
from	sklearn.model_selection	import	train_test_split	
	

#	do	the	actual	split	
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	shuffle=True,	random_state=604,	test_size=0.2)	

 
Notes on the above code: 

• It’s not strictly necessary to set a random state, but it helps to ensure your results are easily reproducible 
• The shuffle=True option tells sklearn to randomly shuffle the data before performing the splits, which is 

generally a good idea 
• Using test_size=0.2 means 20% of the data will be reserved for testing 

o Generally between 20% and 30% seems to make for a reasonable test set 
• In cases where you’re using a categorical variable (explained in detail later) you will usually want to 

include the stratify option to avoid uneven distributions of your categorical variable between the sets 
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5. Validation Sets 
Lecture Notebooks/Supervised Learning/3. Validation Sets.ipynb 

 
In predictive modeling we care most about finding models with a low generalization error rather than merely a 
low training error 

• That is, we want to estimate f as closely as possible, not merely overfit tiny nuances in our training set 
that are not representative of the true underlying distribution 

• Thus, picking among candidate models solely based on the lowest training MSE is problematic 
• Indeed, one cannot measure generalization error using the same data the algorithm was trained on 

o For this we need a validation set (or as we’ll see later, multiple validation sets) 
 
Note that we do not want to use our initial test set for this, since it is meant to be used only as a final check once 
we’ve chosen a model  
 
We can obtain a validation set by further splitting our training set as shown in the image below 

 
 
In practice, we can make this split using sklearn’s train_test_split the same as for the initial train/test split 

• Here again, setting aside between 20% and 30% for the validation set is generally reasonable 
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6. Cross-Validation 
Lecture Notebooks/Supervised Learning/4. Validation Sets.ipynb 

 
Recall that our goal in predictive modeling is to make good predictions on new data 

• That is, data that our model was not trained on 
• Error on new data is often referred to as generalization error because it measures how well our model 

generalizes beyond the training set 
 
Let’s consider the error on a new draw of data to be a random variable that we’ll call G 

• A validation set in essence provides us with a single observation of G, but what we’d really like is to 
have a lot of observations so we can infer something about the distribution from which G is drawn 

 
To accomplish this, we’ll need to leverage the law of large numbers 

• For a sequence "", "$, … , "% of n independent identically distributed random variables with true mean C, 
the law of large numbers says that lim

%→(
"9 = C 

• Essentially, the mean of a set of random draws will approximately equal the true mean of the 
distribution from which they are drawn 

• Thus, if we can generate a sequence of error observations G", G$, … , G% then we know that G̅ ≈ 0(G) 
 
In order to get this sequence of observations, we use k-fold cross-validation 

• Split the training data into k equal (or at least roughly equal) chunks 

 
 
Then generate “observations” of G by cycling through each of the k chunks 
• Train your model on the I − 1 other chunks and then calculate the error on the left out set 
• At the end you will have k observations of G, and the mean of G", … , G) will give you an estimate of 0(G) 

 
 
In general, cross-validation is preferable to using a validation set since all else being equal it is better to have a 
group of observations of the generalization error rather than just a single observation 

• However practical constraints often dictate that you use a validation set instead 



 8 

• Common reasons for using a validation set include having a relatively small amount of data to use for 
your analysis or working with models that take considerable amounts of time to train 

 
You could code up k-fold cross-validation splits in a number of ways, but we’ll focus on using sklearn here 
 
Sample Code: 

#	import	KFold	
from	sklearn.model_selection	import	KFold	
	

#	make	a	KFold	object	
kfold	=	KFold(n_splits=5,	shuffle	=	True,	random_state=614)	
	

#	when	fitting	a	model	we'd	do	something	like	the	following	
for	train_index,	test_index	in	kfold.split(X_train,	y_train):	
	 #	get	the	kfold	training	data	
	 X_train_train	=	X_train[train_index,:]	
					y_train_train	=	y_train[train_index]	
					

					#	get	the	holdout	data	
					X_holdout	=	X_train[test_index,:]	
					y_holdout	=	y_train[test_index]	
					

					#	then	fit	your	model	
					#	and	record	the	error	on	the	holdout	set	

 
Notes on the above code: 

• This assumes you’ve already made a standard train/test split to begin with 
• More practical applications of this will follow shortly 
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7. Multiple Linear Regression 
Lecture Notebooks/Supervised Learning/Regression/2. Multiple Linear Regression.ipynb 

 
In cases where the variable you are interested in modeling depends on more than one variable you can use 
multiple linear regression 
 
Here we are going to regress y on a range of variables "", … , "* using the following model 

# = -! + -""" + -$"$ +⋯+ -*"* + ) = "- + ) 
 
Note that " = "", … , "* and - = -", … , -* are just used for convenient vector notation, and observations are 
denoted as 7"(#), #(#)8 with superscripts to avoid confusion with the features in " 
 
As in simple linear regression, we’ll focus on minimizing the MSE using our n observations 

./0 = 1
237#(#) − #K(#)8$

%

#&"

= 1
237#(#) − "(#)-*8$

%

#&"

 

Rewriting using some linear algebra (so that here T signifies transpose) we obtain 

./0 = 1
2 7# − "-

*8-(# − "-) = 1
2 7#

-# − -*-"-# − #-"-* + -*-"-"-*8 
 
Finding the minimum by taking the derivative with respect to -*  and setting it equal to zero we recover the 
ordinary least squares estimate of the coefficient vector -, an equation sometimes called the normal equation 

"-"-* − "-# = 0 → -* = ("-").""-# 
 
As with simple linear regression, this is a relatively simple prescription, and you could code it up using any 
number of techniques 

• The associated notebook goes over how to do so using numpy/linalg, but I’ll just focus on sklearn here 
 
Sample Code: 

#	make	some	phony	data	
X_train	=	np.ones((1000,4))	
X_train[:,1:]	=	np.random.randn(1000,	3)	
y_train	=	2	+	1*X_train[:,1]	-	4*X_train[:,2]	+	3*X_train[:,3]	+	np.random.randn(1000)	
	

#	import	the	LinearRegression	object	
from	sklearn.linear_model	import	LinearRegression	
	

#	make	the	model	object	
reg	=	LinearRegression(copy_X=True,	fit_intercept=False)	
	

#	fit	the	model	object	
reg.fit(X_train,	y_train)	

	

#	look	at	coef	(this	gives	β	̂)	
reg.coef_	

	

#	make	a	prediction	
y_pred_sklearn	=	reg.predict(X_train)	
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#	calculate	the	mse	
print(	“The	MSE	is”,	np.sum(np.power(y_train-y_pred_sklearn,	2))/len(y_train)	)	

 
Notes on the above code: 

• This assumes you have constructed X_train with an initial column of ones 
o You can then set fit_intercept=False and the regression will estimate the intercept as the first 

entry in reg.coef_ 
o Thus reg.coef_ cleanly gives you the entire -*!, … , -** list 

• Alternatively, you can leave out this initial column of ones in X_train (so that it only contains the actual 
variables you’re regressing on) and set fit_intercept=True 

o In this case reg.intercept_ gives you -*! while reg.coef gives you the -*", … , -** list 
o Personally, this seems a bit more intuitive and is probably what I’d use in general 

• Note that we do not need to use reshape here 
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8. Regression: Categorical Variables and Interactions 
Lecture Notebooks/Supervised Learning/Regression/3. Categorical Variables and 

Interactions.ipynb 
 
Categorical variables are those that can take on one of a limited number of possible values 

• These might include things like book genres, car manufacturers, hair colors, education level, and so on 
• In this lesson we’ll focus on beer types like IPA and stout 

 
When we examine our data set, it seems that IPAs and stouts behave a little differently, so we’d like to include 
them in our modeling 

 
In order to do this we’ll utilize one-hot encoding to go from human-readable strings to numeric values useable 
for our regression models 

• If you have a variable with k unique categories then you will need k-1 indicator variables to fully one-
hot encode the data set 

N/ = O1				if	+ = R
0				if	+ ≠ R 	,				for	R = 1,… , I − 1 

 
This is quite simple for our two-typed beer data set, as we can one-hot encode it using a single stout indicator 

N01231 = T1				Beer	is	a	Stout0												Otherwise 

 
This would be easy to code up manually, but for future reference we’ll look at the get_dummies function that 
will be very helpful when we progress to more complex problems 
 
Once we have this variable we can do linear regression for a stout-inclusive model of the form 

N^_ = -! + -"`^a + -$N01231 + ) 
 
This fits two separate lines, one on the points where N01231 = 0 and one on the points where N01231 = 1 

• However it requires them both to have the same slope -" 
• In order for us to be able to fit the slopes independently we need to include an interaction term 

 
The interaction model is then 

N^_ = -! + -"`^a + -$N01231 + -4`^a × N01231 + ) 
Meaning that 

↪ N^_ = O-! + -"`^a + ),																														if	N01231 = 0
(-! + -$) + (-" + -4)`^a + ),			if	N01231 = 1 

 
Sample Code: 

#	cleanly	import	data	from	a	csv	into	a	pandas	dataframe	
beer	=	pd.read_csv(“~/Erdos/fall-2021/Data/beer.csv”)	
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#	stratify	our	split	on	the	categorical	variable	‘Type’	
beer_train,	beer_test	=	train_test_split(	beer.copy(),	
								shuffle=True,	random_state=48,	
								stratify=df[‘Type’],	test_size=0.2	)	
	

#	sample	call	for	get_dummies	
pd.get_dummies(beer_train[‘Beer_Type’])	

	

#	store	the	stout	indicator	from	get_dummies	as	a	new	variable	
beer_train.loc[:,‘Stout’]	=	pd.get_dummies(beer_train[‘Beer_Type’]).loc[:,‘Stout’].copy()	
	

#	Make	the	interaction	term	
beer_train[‘ABV_Stout’]	=	beer_train[‘ABV’]	*	beer_train[‘Stout’]	

  
Notes on the above code: 

• Here we have included the stratify option to keep the proportions of the ‘Type’ variable consistent 
between our train and test sets 

o You’d want to do the same thing if you were making validation sets for this data 
• Note that depending on when you make your train/test/validation splits and when you add the indicator 

and interaction term variables to the dataframe, you may need to manually add them to the test and 
validation sets 

o If you know in advance that you’ll need indicators/interaction terms you can avoid this by 
creating them in the full dataframe before doing the train/test/validation splits 
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9. Shallow and Deep Copies in Python 
Lecture Notebooks/Python Stuff/1. Shallow and Deep Copies.ipynb 

 
If you make a list called a as a=[1,2,3,4,5,6,7,8,9,10] then python will, not surprisingly, store that list 

 
 
If you define a new list b using b=a, python will point b to the same list object that a is pointed to 

 
 
This is called a shallow copy 

• If you modify b using something like b[4]=11, the same modification will be applied to a 
• Probably not what you want in most cases 

 
To avoid this problem you need to make a deep copy 

• To do this, simply define b as b=a.copy() 
 
This is essentially the same thing we’re doing when we make train/test splits using df.sample().copy() or when 
we call LinearRegression(copy_X=True) 

• This will also come up when we implement cross-validation with sklearn's clone method 
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10. Polynomial Regression and Nonlinear Transformations 
Lecture Notebooks/Supervised Learning/Regression/4. Polynomial Regression and Nonlinear 

Transformations.ipynb 
 
When examining data, you may note that certain variables exhibit nonlinear relations with the y variable you are 
interested in modeling 

• For instance, x1 in the example plot shown below seems to be quadratic 
• Indeed, after transforming to x12 (labeled ‘x1_sq’) the relationship with y looks quite linear 

           
 
Once you’ve included the modified term in your dataframe, linear regression can be performed the same as 
previously 

• For the above model we might start by fitting a model of the form # = -! + -"+" + -$+"$ + -4+$ + ) 
• Note that here the -$ term will be fit using the x1_sq data 

 
By looking at a plot of #K − # we can use residuals to help validate our modeling 

• When plotting residuals vs y for a good model we would expect to see a uniform band of points 
• Structure in a residual plot indicates that we’re missing some meaningful input in our model 
• Here our initial model is clearly flawed, so we might try including an interaction term between +" and +$ 

 
        # = -! + -"+" + -$+"$ + -4+$ + )    # = -! + -"+" + -$+"$ + -4+$ + -5+"+$ + ) 

  
When analyzing data, oftentimes you just have to do a lot of data exploration since there’s no guaranteed way of 
knowing beforehand whether you’ll need an interaction term or not 
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Note that you generally want to include all lesser powers when modeling a variable 

• I.e., if your model includes +"4 you should also include +"$ and +" terms 
• Similarly, if you include an interaction term +" ⋅ +$ you should include both +" and +$ terms 

 
In addition to the polynomial transformations explored here, we could apply the same method to other 
transformations like √, log, sin, f6, etc. 
 
Sample Code: 

#	import	the	scatter_matrix	package	
from	pandas.plotting	import	scatter_matrix	
	

#	plot	a	scatter	matrix	to	help	visualize	the	data	in	df_train	
scatter_matrix(df_train,	figsize=(14,14),	alpha=0.9)		
plt.show()	

	

#	make	an	additional	entry	for	x1^2	
df_train[‘x1_sq’]	=	df_train[‘x1’]**2	
#	also	make	an	x1*x2	entry	
df_train[‘x1x2’]	=	df_train[‘x1’]*df_train[‘x2’]	
	

#	import	LinearRegression	
from	sklearn.linear_model	import	LinearRegression	
	

#	fit	the	model	
reg	=	LinearRegression(copy_X=True)	
reg.fit(df_train[[‘x1’,’x1_sq’,‘x2’,‘x1x2’]],	df_train[‘y’])	

 
Notes on the above code: 

• Here scatter_matrix’s alpha option determines the opacity of the points to be plotted 
o Smaller alpha à points are more transparent 
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11. The Bias-Variance Trade-Off 
Lecture Notebooks/Supervised Learning/5. Bias-Variance Trade-Off.ipynb 

 
High bias typically indicates underfitting the data, while high variance typically indicates overfitting 
 
Recall that our statistical learning framework is built around fitting the model # = %(") + ) to obtain an 
estimate of % called %* 
 
As discussed previously, one of the most important characteristics of any given model is its generalization error 

• Previously we’ve used the test or validation set MSEs to estimate this 
 
Letting #! and "! denote a single test set, we find 

0[(#! − #K!)$] = 0 i4#! − %*("!)6
$
j = 0 k7%("!) − %*("!) + )8

$l 
 

Recalling that Bias 4%*(")6 = 0 4%(") − %*(")6, this can be rewritten as 

Var 4%*("!)6 + kBias 4%*("!)6l
$
+ + Var()) = Variance	of	%* + Bias	squared	of	%* + irreducible	error 

 
Both Var and Bias2 are nonnegative, so the best we can do is produce an algorithm with irreducible error Var()) 

• We can reduce our generalization error by reducing either our model’s Bias or its Var 
• However, it is often not possible to reduce both simultaneously 
• Oftentimes lowering a model’s Bias will increase its Var 

 
Consider the set of data shown below, which we will fit iterations of multiple times to explore bias and variance 

 
 
An example of a model with high bias and low variance for this data set is to take the mean observed y value 

• This will significantly underfit the data (which shows a clear pattern) and the bias will be high because 
the model will be far from the true relationship between y and x 

• The variance will be low, however, because with a large enough sample the law of large numbers tells 
us that the sample mean should be close to 0(#) 

o Thus s long as our training sample is large enough, then our %* = #9 model will not vary much 
over different samples 

 
A linear regression model with low bias but high variance would be one fit using a high degree polynomial of x 

• Here we’re fitting a 20 degree polynomial 
• The bias here will be low because a high degree polynomial will more closely fit the true relationship 



 17 

• However the variance will be high because, as the degree of the fitting polynomial increases, the model 
is increasingly likely to overfit nuances in the training set that do not reflect the underlying probability 

 
Ideally you want to settle on a “just right” Goldilocks model 

• Looking at the data in this case, that would probably be a quadratic 
 
The model with the lowest generalization error tends to occur somewhere between the extremes of high 
variance and high bias 

 
 
Returning again to the sample data set from above and using polynomial degree as our metric for model 
complexity, we can see this behavior in practice 

• At the low end of complexity, where bias dominates in models like %* = #9, the MSE is huge 
• At the high end of complexity with 20+ degree polynomials, variance dominates and MSE increases 
• As expected, the lowest MSE is found for a Goldilocks quadratic model  
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12. Scaling Data 
Lecture Notebooks/Data Preprocessing/2. Scaling Data.ipynb 

 
Sometimes prior to fitting a model you will need to scale your data, particularly when some features are on 
vastly different scales than others 
 
There are multiple ways of doing this, but one of the most commonly used ones is to standardize the data like so 

+789:;< =
+ −mean(+)

standard	deviation(+) =
+ − +̅
r(+)  

 
This is the transformation applied to turn any arbitrary normal random variable into a standard normal random 
variable, hence the name standardizing 

• This transforms your data to have mean 0 and standard deviation 1 
• We could code this up in numpy easily enough, but that’d get tedious quickly 
• Instead we’ll use sklearn’s StandardScaler object, which will also play nicely with train/test splits 
• Note that this is not an appropriate scaler to use for one-hot encoded categorical variables 

 
In addition to StandardScaler sklearn offers the MinMaxScaler, which will scale a column of observations such 
that the values map to the interval [0,1], with the maximum value mapping to 1 and the minimum to 0 
 
Sample Code: 

#	import	StandardScaler	
from	sklearn.preprocessing	import	StandardScaler	
	

#	make	a	scaler	object	
scaler	=	StandardScaler()	
	

#	fit	the	scaler	to	the	training	set	
scaler.fit(X_train)	

#	scale	the	training	data,	i.e.	transform	it	
X_train_scale	=	scaler.transform(X_train)	
	

#	alternatively,	could	use	
#	X_train_scale	=	scaler.fit_transform(X_train)	
	

#	transform	the	test	set	
scaler_new.transform(X_test)	

 
Notes on the above code: 

• In the scaler.fit() step StandardScaler goes through your data columns to find/store the mean and 
standard deviation, which are then applied in the scaler.transform() step 

o Thus, scaler.fit() must be called before scaler.transform() 
• You do have the option to do both steps in one by calling scaler.fit_transform(), but you need to be 

careful about how you choose to do so 
o If you’ve done all your modeling using a scaled training set, you need to use the training mean 

and standard deviation when scaling your test/validation sets 
o So you might use scaler.fit_transform() for the training set, but you need to be careful not to refit 

the scaler when you scale the test data 
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13. Basic Pipelines 
Lecture Notebooks/Data Preprocessing/3. Basic Pipelines.ipynb 

 
A pipeline is a nice framework for combining the kind of preprocessing steps like scaling, polynomial 
transforms, and one-hot encoding/interaction terms that we’ve covered previously into a convenient container 
that also fits your model, essentially: 

 
 
Here we will look at using sklearn’s PolynomialFeatures and Pipeline functions to analyze this set of toy data 

 
PolynomialFeatures allows us to transform our data cleanly into an array of polynomial transforms 

• In the sample code below, for example, we provide a list of x values and this package provides us an 
array of x, x2, and x3 values 

o This can easily be tuned for polynomials of arbitrary degree xn  
• Basically you’re automating the process by which we’ve previously gone through and manually 

generated columns like x1_sq=x2 
 
When defining your pipe object using Pipeline, you define your steps as a list 

• For the Mario illustration above you’d include scaling, column transforms, the additional steps in …, 
and then model fitting 

• For the simple exercise outlined in the notebook you need only include the PolynomialFeatures 
transform and then linear regression 

 
Sample Code: 

#	generate	toy	data	
x	=	np.linspace(-3,7.5,1000)	
y	=	(x-7)*(x+2)*x	+	10*np.random.randn(1000)	
					

#	import	PolynomialFeatures	
from	sklearn.preprocessing	import	PolynomialFeatures	
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#	demonstrate	functionality	of	PolynomialFeatures	
poly	=	PolynomialFeatures(3,	interaction_only=False,	include_bias=False)	
poly.fit_transform(x.reshape(-1,1))	
	

#	import	Pipeline	
from	sklearn.pipeline	import	Pipeline	
	

#	make	the	example	Pipeline	object	
pipe	=	Pipeline([(‘poly’,	PolynomialFeatures(3,	interaction_only=False,	include_bias=False)),	
																				(‘reg’,	LinearRegression(copy_X=True))])	
	

#	fit	the	Pipeline	object	
pipe.fit(x.reshape(-1,1),	y)	
	

#	to	make	predictions	
pipe.predict(x.reshape(-1,1))	
	

#	to	access	individual	components	of	Pipeline	(in	this	case	the	regression	coefficients)	
pipe[‘reg’].coef_	

#	or	to	recover	the	polynomial	transform	output	
Pipe[‘poly’].transform(x.reshape(-1,1))	

 
Notes on the above code: 

• In this example we’ve used interaction_only=False because we’re only trying to get powers of a single 
variable x 

• We’ve also used include_bias=False because the linear regression model will handle this for us 
o Note that bias here is referring to the intercept term, so this is related to the discussion in 

Multiple Linear Regression about incorporating a column of ones in X when fitting 
• Here we have again needed to use reshape(-1,1) because x is just a single dimension 
• Note that, while we did not need to include a scaler transform for this particular sample pipeline, we 

could easily have done so by including it in our Pipeline list prior to the polynomial transform 
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14. Regularization, Ridge, and Lasso Regression 
Lecture Notebooks/Supervised Learning/Regression/5. Regularization Ridge and Lasso 

Regression.ipynb 
 
Note that we measure how large a vector - is using a vector norm, denoted as ‖-‖ 

• When doing ordinary least squares regression, all we were concerned with was minimizing the MSE, but 
in regularization we constrain ourselves so that we only consider models such that ‖-‖ < u 

• Basically we try to find the smallest MSE within our constraint budget 
 
In practice, this is equivalent to minimizing the following: 

‖# − "- − -!‖$$ + v‖-‖,where	v	is	some	constant	and	‖v‖$$ = v"$ + v$$ +⋯+ v%$ 
 
Note that minimizing ‖# − "- − -!‖$$ is equivalent to minimizing MSE, so we can think of v‖-‖ as a penalty 
term that prevents - from growing too large as we minimize MSE 
 
The amount we “penalize” for a large - depends on the value of v, our first example of a hyperparameter 

• A hyperparameter is a parameter we set prior to fitting the model, as opposed to normal parameters like 
our - coefficients that we estimate during the training process 

• For v = 0 we recover the standard OLS estimate, while for v = ∞ we obtain - = 0 
• Values of v between these extremes will yield different coefficient estimates, and that which gives the 

best model for your data can be found through cross-validation model comparisons 
 
In ridge regression we take ‖v‖ to be the square of the Euclidian norm, ‖v‖$$, so we have 

‖v‖$$ = v"$ + v$$ +⋯+ v%$ 
 
In lasso regression we take ‖v‖ to be the l1-norm, so we have 

‖v‖" = |v"| + |v$| + ⋯+ |v%| 
 
Both of these can be easily implemented using sklearn packages 

• Note that it is important to scale your data here, as different scales can have a dramatic impact on how 
the associated penalty contributions are calculated 

 
Example output from ridge and lasso regression on quadratic data (see sample code below) 

     
 
Here we see that the coefficients for lasso regression shrink to 0 quite quickly, while those for ridge regression 
persist and never quite reach 0 

• This is generally the case, and makes feature selection one of the benefits of lasso regression 
• Coefficients that tend to stay above 0 as we increase v in lasso regression are typically the most 

important features for minimizing the training MSE 
 
We can conceptualize why this happens by considering a 2D problem where X and y have means of zero 

• In lasso regression we are minimizing ‖# − "-‖" under the constraint that ‖-‖" ≤ u 
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o For two features, this becomes |-"| + |-$| ≤ u, which describes a filled square with vertices at 
(c,0), (0,c), (-c,0), and (0,-c) 

• In ridge regression we are minimizing ‖# − "-‖$$ under the constraint that ‖-‖$$ ≤ u 
o For two features, this becomes -"$ + -$$ ≤ u, which is the formula for a filled circle centered at 

the origin with radius √u 

 
 
Given the geometry of the constraint regions, MSE equipotential lines tend to intersect the constraint region at a 
vertex in lasso regression, while for ridge regression they tend to intersect at a slight offset from the - axes 

• In the example above, -$ is a more significant parameter and we see that in lasso regression intersection 
occurs at a point where -" = 0, while in ridge regression intersection occurs at a point -" < 0 

• We’ve visualized this in 2D, but the concept generalizes to higher dimensions with 2 > 2 parameters 
 
As a reminder for practical purposes, decreasing v for the sklearn Lasso and Ridge objects increases the size of 
the constraint region, while increasing v will shrink the constraint region 
 
Pros of lasso regression 

• Works well when you have a large number of features that don’t have any effect on the target 
• Feature selection is a plus, allowing for a sparser model that uses less computational resources 

Cons of lasso regression 
• Can have trouble with highly correlated features (collinearity), as it typically chooses one variable 

among those that are correlated, which may be random 
 
Pros of ridge regression 

• Works well when the target depends on all or most of the features 
• Can handle collinearity better than lasso regression 

Cons of ridge regression 
• Because ridge regression typically keeps most of the predictors in the model, this can be a 

computationally costly approach for data sets with a  large number of predictors 
 
Elastic net regression fits in between ridge and lasso regression, incorporating both penalty functions and 
seeking to minimize the function 

‖# − "- − -!‖$$ + v"‖-‖"|}~}�
=>??@	BCDE

+ v$‖-‖$$|}~}�
DFGHC	BCDE

 
 
Sample Code: 

#	re-generate	model	data	(this	is	the	same	data	we	used	in	the	bias-variance	tradeoff	notebook)	
x	=	np.linspace(-3,3,100)	
y	=	x*(x-1)	+	1.2*np.random.randn(100)	
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#	import	necessary	packages	
from	sklearn.preprocessing	import	PolynomialFeatures	
from	sklearn.pipeline	import	Pipeline	
from	sklearn.linear_model	import	LinearRegression	
from	sklearn.preprocessing	import	StandardScaler	
	

#	import	the	two	regression	models	
from	sklearn.linear_model	import	Ridge,	Lasso	
	

alpha	=	[0.00001,	0.0001,	0.001,	0.01,	0.1,	1,	10,	100,	1000]	
n=10	
	

#	to	hold	our	coefficient	estimates	
ridge_coefs	=	np.empty((len(alpha),n))	
lasso_coefs	=	np.empty((len(alpha),n))	
	

#	for	each	alpha	value	
for	i	in	range(len(alpha)):	
				#	set	up	the	ridge	pipeline	
				ridge_pipe	=	Pipeline([(‘scale’,StandardScaler()),	
																														(‘poly’,PolynomialFeatures(n,	interaction_only=False,	include_bias=False)),	
																														(‘ridge’,Ridge(alpha=alpha[i],	max_iter=1000000))])	
					

				#	set	up	the	lasso	pipeline	
				lasso_pipe	=	Pipeline([(‘scale’,StandardScaler()),	
																														(‘poly’,PolynomialFeatures(n,	interaction_only=False,	include_bias=False)),	
																														(‘lasso’,Lasso(alpha=alpha[i],	max_iter=5000000))])	
				

				#	fit	the	ridge	
				ridge_pipe.fit(x.reshape(-1,1),	y)	
				#	fit	the	lasso	
				lasso_pipe.fit(x.reshape(-1,1),	y)	
	

				#	record	the	coefficients	
				ridge_coefs[i,:]	=	ridge_pipe[‘ridge’].coef_	
				lasso_coefs[i,:]	=	lasso_pipe[‘lasso’].coef_	
 

Notes on the above code: 
• Here we have upped max_iter from the default value of 1000 because this was not enough to converge 
• Note that if you use alpha=0.0 in practice the sklearn regressor object won’t work very well 

o If you’re interested in this exact value, just use a regular linear regression 
o Alternatively you can usually use something small like alpha=0.000001for most applications 
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15. Practicing Cross-Validation 
Lecture Notebooks/Supervised Learning/Regression/6. Practicing Cross-Validation.ipynb 

 
Here we’ll work through a sample data set to model car seat sales, fitting a few sample models to demonstrate 
how to use cross-validation in practice 

 
 
Models to be fit: 

Sales = Avg(Sales) + ) 
Sales = -! + -"CompPrice + ) 

Sales = -! + -"CompPrice + β$Price + ) 
Sales = -! + -"CompPrice + β$Price + -4ShelveLoc_Bad + β5ShelvLoc_Good + ) 

 
Sample Code: 

#	set	the	indicator	variables	
car_train[[‘ShelveLoc_Bad’,	‘ShelveLoc_Good’]]	=	pd.get_dummies(car_train[‘ShelveLoc’])[[‘Bad’,	‘Good’]]	
	

#	import	KFold	
from	sklearn.model_selection	import	KFold	
#	import	clone	
from	sklearn.base	import	clone	
	

#	list	all	potential	features	for	the	models	
models	=	[	‘baseline’,	[‘CompPrice’],	[‘CompPrice’,	‘Price’],	
																			[‘CompPrice’,	‘Price’,	‘ShelveLoc_Bad’,	‘ShelveLoc_Good’]	]	

	

#	list	for	holding	MSEs	
cv_mses	=	np.zeros((5,len(models)))	
	

#	loop	through	cv	splits	
i	=	0	
for	train_index,	test_index	in	kfold.split(car_train):	
				#	get	train_train	data	
				car_train_train	=	car_train.iloc[train_index]	
				car_holdout	=	car_train.iloc[test_index]	
					

				#	loop	through	all	models	
				j	=	0	
				for	model	in	models:	
								if	model	==	“baseline”:	
												car_train_train_mean	=	car_train_train.Sales.mean()	
												predict	=	car_train_train_mean	*	np.ones(len(car_holdout))	
												cv_mses[i,j]	=	mse(car_holdout.Sales,	predict)	



 25 

								else:	
												reg_clone	=	clone(reg)	
												reg_clone.fit(car_train_train[model],	car_train_train.Sales)	

												predict	=	reg_clone.predict(car_holdout[model])	
												cv_mses[i,j]	=	mse(car_holdout.Sales,	predict)	
								j	=	j	+	1	
				i	=	i	+	1	
	

#	get	the	model	with	the	lowest	average	cv	mse	
models[np.argmin(np.mean(cv_mses,	axis=0))]	
	

#	what	is	the	lowest	avg	cv	mse?	
np.mean(cv_mses,	axis=0)[np.argmin(np.mean(cv_mses,	axis=0))]	

 
Notes on the above code: 

• This assumes you’ve already done a train/test split on your data and previously defined an mse function 
• The clone object is used to make a deep copy of a base regression object for us to fit each time through 

our cross-validation loop 
o Always good to err on the safe side and avoid potential issues with shallow copies 

• Note that by convention i is usually used as a row counter, while j is typically used as a column counter 
o So in this example i is the counter as we loop through the 5 KFold training/validation sets, while 

j is the counter as we loop through our possible models 
o Obviously this is arbitrary and you can use other counter variables if you prefer, it’s just easy to 

stick with convention all else being equal 
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16. Some Regression Model Selection Techniques 
Lecture Notebooks/Supervised Learning/Regression/7. Some Regression Model Selection 

Techniques.ipynb 
 
When building models, one of our most important tasks is to identify which features to include in our modeling 

• Certainly in most applications you will have some features that do not provide enough predictive power 
to warrant inclusion in your final model 

 
The most direct, brute force approach is that of best subsets selection, in which you look at every possible 
model from a set of features 

• For each subset of features you train a model and record the CV MSEs, noting at the end which 
combination of features yields a model with the best (that is, lowest) generalization error 

o Alternatively you could use a single validation set if the data was necessarily limiting 
• This can quickly become impractical due to computational constraints, however 

o If you are testing m features you end up needing to fit and assess 2m models 
 
One approach for avoiding this problem with computational demand is to use “greedy” algorithms that seek to 
improve the model as much as possible at each individual step of the algorithm 

• This generally makes them more efficient, but can come at the cost of overall performance 
• We’ll look at two approaches: forwards selection and backwards selection 

 
In forwards selection you begin from a baseline model that uses no features and then iteratively improve it by 
adding individual features 

1. Fit the baseline model and record the average CV MSE 
2. Fit each of the m possible simple linear regression models and calculate their average CV MSE 

o If none of them outperform the baseline model, you are done 
o Else, choose the one with the lowest average CV MSE to be your new default model 

3. Step à: Loop through each of the ! − à features not included in the default model, fit the regression 
model that includes them, and calculate the average CV MSE 

o If none of them outperform the current default model, you are done 
o Else, choose the one with the lowest average CV MSE to be your new default model 

4. Repeat Step à until you either find an iteration where the inclusion of new features does not improve 
upon your default model or you have included all features 

 
Backwards selection essentially reverses this, starting with a model that incorporates all available features and 
iteratively trimming it down 

1. Fit the linear regression model that includes all m features 
o This is your initial default model 

2. Fit each of the m linear regression models that result from removing exactly one feature and calculate 
the resulting average CV MSE 

o If none of them outperform the baseline model, you are done 
o Else, choose the one with the lowest average CV MSE to be your new default model 

3. Step à: Loop through each of the ! − (à − 1) features still included in the default model, fit the 
regression model that removes them, and calculate the average CV MSE 

o If none of them outperform the current default model, you are done 
o Else, choose the one with the lowest average CV MSE to be your new default model 

4. Repeat Step à until you either find an iteration where the removal of new features does not improve upon 
your default model or you have removed all features 

 
Note that either of these approaches will terminate in at most !! Steps 
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Another tool for feature selection is to use lasso regression 

• Slowly increase the value of the hyperparameter v and observe the persistence of coefficients 
• Coefficients that stay above 0 the longest are likely to be significant 
• See associated notebook for a quick example of doing this in practice with the car seats dataset 

 
Sample Code: 

#	this	will	return	a	list	of	all	the	possible	feature	combinations		in	a	list	s	
def	powerset(s):	
				power_set	=	[]	
				x	=	len(s)	
				for	i	in	range(1	<<	x):	
								power_set.append([s[j]	for	j	in	range(x)	if	(i	&	(1	<<	j))])	
				return	power_set[1:]	
	

#	import	mse,	rather	than	defining	it	ourselves	
from	sklearn.metrics	import	mean_squared_error	
	

#	list	of	all	the	models	we’re	going	to	test	using	best	subsets	selection	
models	=	powerset([“CompPrice”,	“Advertising”,	“Price”,	“Population”,	“ShelveLoc”])	
	

#	modify	this	list	to	handle	our	one-hot	encoded	indicator	variables	for	ShelveLoc	
for	i	in	range(len(models)):	
				if	“ShelveLoc”	in	models[i]:	
								models[i]	=	[feature	for	feature	in	models[i]	if	feature	!=	“ShelveLoc”]	
								models[i].extend([“ShelveLoc_Good”,	“ShelveLoc_Bad”])	

	

#	include	the	baseline	model	(which	we’ll	define	as	taking	the	average	sales	in	our	CV	loop)	
models.append(“baseline”)	

	

#	mse	holder	array	
cv_mses	=	np.zeros((5,	len(models)))	
#	base	regression	object	
reg	=	LinearRegression(copy_X	=	True)	
	

#	loop	through	all	splits	
i	=	0	
for	train_index,	test_index	in	kfold.split(car_train):	
				#	get	train	and	holdout	sets	
				car_train_train	=	car_train.iloc[train_index]	
				car_holdout	=	car_train.iloc[test_index]	
	

				#	loop	through	all	models	
				j	=	0	
				for	model	in	models:	
								if	model	==	“baseline”:	
				#	special	handling	for	the	“assume	average	sales”	baseline	model	
												car_train_train_mean	=	car_train_train.Sales.mean()	
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												predict	=	car_train_train_mean	*	np.ones(len(car_holdout))	
												cv_mses[i,j]	=	mean_squared_error	(car_holdout.Sales,	predict)	
								else:	
												#	clone	regression	
												reg_clone	=	clone(reg)	
												#	fit	the	regression	
												reg_clone.fit(car_train_train[model],	car_train_train.Sales)	

												predict	=	reg_clone.predict(car_holdout[model])	
	

												#	record	mse	
												cv_mses[i,j]	=	mean_squared_error	(car_holdout.Sales,	predict)	
								j=j+1	
				i=i+1	
	

#	printout	the	model	with	the	lowest	mean	mse	
print(“The	model	with	lowest	mean	cv	mse	included	the	features”,		

						models[np.argmin(np.mean(cv_mses,	axis=0))],	“and	had	an	avg	cv	mse	of”,	
						np.mean(cv_mses,	axis=0)[np.argmin(np.mean(cv_mses,	axis=0))])	

 
Notes on the above code: 

• This assumes you’ve made a 5-fold split using KFold earlier in the script 
• You could equivalently write i+=1 (and j+=1) at the end of the CV loops 

o Doesn’t really matter beyond i=i+1 being a bit more readable and i+=1 being a bit more efficient 
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17. Interpreting Regression 
Lecture Notebooks/Supervised Learning/Regression/8. Interpreting Regression.ipynb 

 
Up to this point we’ve largely focused on regression as a means of predictive modeling, but here we will instead 
consider its utility for inferential modeling 

• This is a major benefit of regression when compared to some of the more black box-y machine learning 
algorithms that we’ll discuss in later lessons 

• Note that we don’t need to make train/test splits for this kind of modeling 
 
We can use regression models to compare what we expect for y given a value of X 

• This holds for either simple or multiple linear regression 
 
Since the model for regressing y on X is # = "- + ), for a given value "1;71 the expected value of y is 

0(#|" = "1;71) = 0("1;71-) + 0()) = "1;71- 
 
One interesting data set we can look at for inferential modeling is that of wins (here transformed slightly into 
wins above average) vs run differential in baseball 

 
 
We can then use our linear regression to make inferences 

• For example, from the above data we can infer that a team with a +10 run differential should average 
about 1.0 wins above average (corresponding to about 82 wins in a season) 

 
It is straightforward to interpret the values of our -*  coefficients here 

• -*" is the slope of the plotted line, so increasing run differential by one should yield -*" additional wins 
o In this case it turns out that increasing RD by 1 is expected to yield about 0.1 more wins 

• Similarly, in order to increase our win total by one we expect that we’d need to increase our run 
differential by 1/-*" 

o So we need to increase RD by about 10 to yield an additional expected win 
• -*! is the intercept, telling us the wins above average expected for a team with a +0 run differential 

o Unsurprisingly, a team with a +0 run differential is expected to average 0 wins above average 
 
This can be extended to changes in individual predictors in a multiple regression scenario fairly easily 
 
Consider again the car seats data, to which we’ve fit the following model: 

Sales = -! + -"CompPrice + -$Price + -4Advertising + -5ShelveLoc_Good + -IShelveLoc_Bad 
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After fitting this model, we’d be able to say that a 10 unit change in Price, while all other variables are held 
constant, would be expected to yield 10-*$ additional sales 

• You could also examine how changes in multiple continuous features changes the expected sales 
o Like, for example, if you wanted to look at a 10 unit increase in Price combined with a 4 unit 

change increase in Advertising 
 
A note on the intercept term -! 

• Because we’ve used categorial variables to encode the shelve location, the third possibility of a 
“medium” location is not explicitly included in the model 

o Recall that for I possible values we need only encode I − 1 indicator variables 
• In practice that means that -! is the intercept for items at a “medium” shelf location, which can be seen 

by looking at how the Sales model simplifies when all parameters are taken to be zero 
-! + -" ⋅ 0 + -$ ⋅ 0 + -4 ⋅ 0 + -5 ⋅ 0 + -I ⋅ 0 = -! 

 
The intercept terms for “bad” and “good’ locations can be found in a similar fashion 

• For ShelveLoc_Bad=1, the intercept is -! + -" ⋅ 0 + -$ ⋅ 0 + -4 ⋅ 0 + -5 ⋅ 0 + -I ⋅ 1 = -! + -I 
• For ShelveLoc_Good=1, the intercept is -! + -" ⋅ 0 + -$ ⋅ 0 + -4 ⋅ 0 + -5 ⋅ 1 + -I ⋅ 0 = -! + -5 

 
We can also explore how we would expect Sales to change if we were to modify the shelf location of a product 
from “bad” to “good” 

• Here all other parameters are held constant so that only shelf location is changed, and we find 

SalesJ22< = -! + -"CompPrice! + -$Price! + -4Advertising!|}}}}}}}}}}}}}}}~}}}}}}}}}}}}}}}�
K>=C?!

+ -5 + -I ⋅ 0 = Sales! + -5 

SalesL9< = -! + -"CompPrice! + -$Price! + -4Advertising! + -5 ⋅ 0 + -I = Sales! + -I 
↪ SalesJ22< − SalesL9< = -5 − -I 

 
This kind of exercise is extremely helpful for letting you conceptualize how to interpret regressions 

• When in doubt, write out the model and its coefficients and do a little bit of algebra! 
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18. Interval Estimation 
Lecture Notebooks/Supervised Learning/Regression/9. Interval Estimation.ipynb 

 
Once we’ve fit our linear regression model # = "- + ), we can obtain estimates of # for a given set of features 
"! from -*  

• Our fit gives us a point estimate for #, 0(#|" = "!), but what are reasonable possible values for the 
estimate if we were to repeat the data collection and fitting process? 

• According to this data, for a given value of " what is the distribution of # 
 
Point estimates are useful, but it is sometimes preferable to have an estimate for the range of possible values, 
leading to the idea of confidence intervals 

• A confidence interval is a range of values that contain the true parameter with some probability 
o This probability is typically given by 100 ⋅ (1 − v) 
o So for the oft-used v = 0.05, we can construct a confidence interval (ç, é) within which there is 

a 95% probability that the true parameter lies 
o Note that this is related to the r significance convention commonly used in physics and 

astronomy, with 1r → v ≈ 0.32, 2r → v ≈ 0.05, 3r → v ≈ 0.003, and so on 
• Note that the randomness in this range is entirely affiliated with our estimation process, as the true 

parameter is not random at all 
 
When estimating some parameter ê with point estimate êK, the typical construction of a confidence interval is 

êK ± í(".M/$)SE(êK), 
where í(".M/$)is a probability modifier found by locating the value íM that satisfies î(í ≤ íM) = 1 − v/2 and 
SE(êK) is the standard error of the estimate, found by taking the square root of the variance of the estimate  
 
In simple linear regression, the standard error on an estimate of # given features "! is 

SE(#K) = ï∑ (## − #K#)$%
#&"

2 − 2 ï12 +
("! − "9)
(2 − 1)ñO$

	 

 
And since the probability modifier is drawn from a studentized t-distribution with 2 − 2 degrees of freedom, 
denoted as ó%.$,".M/$, the (1 − v) confidence interval on #K is given by 

#K ± ó%.$,".M/$ï
∑ (## − #K#)$%
#&"

2 − 2 ï12 +
("! − "9)
(2 − 1)ñO$

 

 
While we have focused on simple linear regression, you can also derive confidence bounds for multiple linear 
regression, although they require more complicated derivations 

• We won’t bother with the derivations here, although should you need them they should be easy to track 
down with a simple Google search 

o The same is true for prediction intervals (described below) in multiple linear regression 
• In practice you’ll likely just rely on a package like statsmodels to calculate the intervals 

 
In addition to having a plausible interval for the expected value of # for a given value of " (a confidence 
interval), it is also useful to have some sense of a plausible interval for actual values of # for a given value of 
"(a prediction interval) 

• A confidence interval is an interval for the average value of # at a given value of " 
• A prediction interval is an interval for actual values of # at a given value of " 
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In simple linear regression the (1 − v) prediction interval for #|" = "! is given by 

#K ± ó%.$,".M/$ï
∑ (## − #K#)$%
#&"

2 − 2 ï1 + 12 +
("! − "9)
(2 − 1)ñO$

 

 
Note that the prediction interval for a given regression will always be larger than the confidence interval 

   
 
Sample Code:	

#	make	some	toy	data	
np.random.seed(888)	

x	=	4*np.random.randn(500)	-	2	
y	=	1	+	2*x	+	5*np.random.randn(500)	
	

#	import	t-distribution	probability	modifier	
from	scipy.stats	import	t	
#	we	call	this	as	t.ppf(1-alpha/2,	n-2),	so	a	sample	call	is:	
t.ppf(1-.05/2,	len(y)-2)	
	

#	get	the	estimate	of	sigma	for	epsilon	
sigma_hat	=	np.sqrt(np.sum(np.power(y	-	slr.predict(x.reshape(-1,1)),2))/(len(y)-2))	
	

#	function	to	get	the	standard	error	
def	confidence_se(sigma_hat,x_star,	x):	
				return	sigma_hat	*	np.sqrt((1/len(x)	+	np.power(x_star	-	np.mean(x),	2)/((len(x)	-	1)*(np.std(x)**2))))	
	

#	we’ll	consider	a	95%	interval	
alpha=0.05	
	

#	get	confidence	interval	upper	bound	
upper	=	slr.predict(np.linspace(-15,	12,	100).reshape(-1,1))	+	t.ppf(1-(alpha/2),	len(y)-2)*	confidence_se(sigma_hat,	
np.linspace(-15,	12,	100),	x)	
#	now	the	lower	bound	
lower	=	slr.predict(np.linspace(-15,	12,	100).reshape(-1,1))	-	t.ppf(1-(alpha/2),	len(y)-2)*	confidence_se(sigma_hat,	
np.linspace(-15,	12,	100),	x)	
	

#	an	easy	way	to	make	a	confidence	interval	plot	in	seaborn,	skipping	the	manual	definitions	above	
import	seaborn	as	sns	
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sns.regplot(x=x,	y=y,	ci=95)	
plt.show()			

	

#function	for	the	prediction	se	
def	prediction_se(sigma_hat,	x_star,	x):	
				right	=	np.power(x_star-np.mean(x),2)/((len(x)-1)*np.std(x)**2)	
				return	sigma_hat*np.sqrt(1	+	1/len(x)	+	right)	
	

#	get	prediction	interval	upper	bound	
upper	=	slr.predict(np.linspace(-15,	12,	100).reshape(-1,1))	+	t.ppf(1-(alpha/2),	len(y)-2)*	prediction_se(sigma_hat,	
np.linspace(-15,	12,	100),	x)	
#	now	the	lower	bound	
lower	=	slr.predict(np.linspace(-15,	12,	100).reshape(-1,1))	-	t.ppf(1-(alpha/2),	len(y)-2)*	prediction_se(sigma_hat,	
np.linspace(-15,	12,	100),	x) 

 
Notes on the above code: 

• This assumes you’ve previously defined a set of linear toy data # and fit it with a simple 
LinearRegression object slr 
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19. Residual Plots 
Lecture Notebooks/Supervised Learning/Regression/10. Residual Plots.ipynb 

 
If we have a well-fit model # = "- + ) and our underlying assumptions are true, when we subtract our estimate 
from our actual data we should be left with a bunch of random draws from a normal distribution 

• If instead our residuals show non-random structure we know there is missing information in our model 
 
Plots of Residuals (# − #K) vs. Features (") 
 
Missed Signal 

• These plots are useful for seeing if you are missing some kind of signal in your data, for example by not 
using a transformation of the feature 

 
Consider a data set generated by adding a bit of random noise to a quadratic 

• If you use a model that only includes a linear term for x, your residuals show clear structure, because 
your model is missing significant signal that exists in the data set 

• If you use an appropriate 2-degree polynomial linear regression your residuals, as expected and as we 
hope to see, look like a random blob 

 
Toy Data       # = -! + -"+ model            # = -! + -"+ + -$+$ model 

   
 
Equal Variance 

• Another reason we may look at these plots is for assessing our assumption that ) is drawn from a 
uniform distribution for all values of " (an assumption referred to as homoskedasticity) 

o A funnel shape (see below) indicates that the variance of ) is not equal across all values of " 
o This doesn’t usually impact the regression fit too much, but it may impact predictions 
o Note that unequal variances is sometimes referred to as heteroskedasticity 
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Missed Interactions 
• These plots can also be useful for identifying missed interaction terms 

o The presence of a sort of crossed pattern in your residuals suggests a missed interaction 
o For example, if you have data generated from # = +" ∗ +$ + ) and you fit a regression using just 

" = (+", +$), you have a clear crossed pattern 
§ This is rectified when you include the interaction term and use " = (+", +$, +" ⋅ +$) 

 
     " = (+", +$) Regression              X= (+", +$, +" ⋅ +$) Regression 

                       
 
Plots of Residuals (# − #K) vs. Predicted Values (#K) 

• Often you will want to do this in practice, since plotting individual residual vs features plots can become 
impractical when you have a large number of features 

• These plots can be used to diagnose the same problems discussed above 
• See below for how the above examples translate to residuals vs predicted values 

 
     Missed Signal                    Unequal Variance         Missed interaction 

   
     After including an +$ term               After including an +" ⋅ +$ interaction term 
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20. Weighted Linear Regression 
Lecture Notebooks/Supervised Learning/Regression/11. Weighted Linear Regression.ipynb 

 
Up to here we’ve focused on problems where we assume all our data has equal variance, but now we’ll look at a 
regression approach that helps address when this is not the case 
 
Rather than minimizing MSE, we’ll look at minimizing a weighted MSE for a set of chosen weights ô(#) 

WMSE7-,ô("), … , ô(%)8 = 1
23ô(#)7#(#) − "(#)-8$

%

#&"

 

= 1
2 (# − "-)

-ú(# − "-) = 1
2 (#

-ú# − #-ú"- − --"-ú# + --"-ú"-) 
Here ú is a diagonal matrix with ô(#) along the diagonal 
 
Taking the derivative of this with respect to - and setting it equal to zero, we find the following weighted least 
squares estimate for -: 

-*QRK = ("-ú").""-ú# 
 
Weighted regression ensures that certain observations are paid greater attention when fitting 

• Because those observations with higher weight contribute more to the WMSE, the estimate of -*  
provided by WLS ensures that those estimates are closer to their actual values 

• It is also easy to code up in practice, as all you need to do is give LinearRegression a set of weights to 
use when fitting the model 

 
When using weighted regression to build a model on data we suspect have unequal variances (or when we know 
it does because we have measurement uncertainties) we use the following as our weights for each observation 

ô(#) = 1/r#$ 
 
If you are working with data that comes with associated measurement uncertainties, r# is generally easy to find 

• In physics and astronomy values are typically quoted with 1r uncertainties, which can be taken as r# for 
the measurement in question 

• Thus a quantity 25 ± 2 has r = 2 and an associated weight ô = 1/2$ = 0.25 
• Note that uncertainties reported using 95% confidence intervals are approximately equivalent to being 

quoted with 2r uncertainties 
 
More generally, we can estimate r# from our data set, and one means of doing so is to: 

1. Fit the typical linear regression model for the model you are interested in 
2. Calculate the residuals for that model 
3. Regress the absolute value of the residuals for that model on the predicted values 

o Call this regression the w regression for reference 
4. Use the w regression model to get the r# values, and then use these to obtain the weights ô(#) 
5. Finally, use these weights to fit your weighted linear regression model 

 
Sample Code: 

#	need	to	import	LinearRegression	
from	sklearn.linear_model	import	LinearRegression	
	

#	get	the	variances	
sigma_is	=	w_reg.predict(predicted.reshape(-1,1))	
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#	get	the	weights	
w_is	=	1/np.power(sigma_is,	2)	
	

#	fit	the	weighted	linear	regression	model	
wls	=	LinearRegression(copy_X=True)	
wls.fit(x.reshape(-1,1),	y,	sample_weight=w_is)	

 
Notes on the above code: 

• This assumes you’ve already fit a standard linear regression 
• A full worked example of the above method can be found in the associated notebook for this lesson 
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21. Train/Test Splits for Classification 
Lecture Notebooks/Supervised Learning/Classification/1. Train Test Splits for 

Classification.ipynb 
 
A major assumption in supervised learning is that your data is always being drawn from the same underlying 
probability distribution 

• So when we make any kind of data split we want both sets in the split to look approximately the same 
• This is particularly important when your data is significantly imbalanced, meaning one of the categories 

occurs more frequently than the other(s) 

 
 
We can ensure that our splits are representative of the sample's distribution by using stratification 

• When we perform a data split stratified on a categorical variable we break our sample into the 
observations corresponding to each unique category 

• We then perform a randomized split on each of those subsets 
• After the random split, all of the respective categories are recombined into two unique data sets with 

categorical splits roughly equal to the original sample distribution 

 
 
This is very easy to implement in practice 

• For a single train/test split using sklearn’s train_test_split function, just include a stratify argument 
• For k-fold cross-validation, use sklearn’s StratifiedKFold function 

 
Sample Code: 

#	import	train_test_split	
from	sklearn.model_selection	import	train_test_split	
#	make	a	stratified	train/test	split	
beer_train,	beer_test	=	train_test_split(	beer.copy(),	shuffle=True,		random_state=48,	stratify=beer[‘Beer_Type’]	)	
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#	import	StratifiedKFold	
from	sklearn.model_selection	import	StratifiedKFold	
#	make	the	kfold	object	
kfold	=	StratifiedKFold(n_splits	=	5,	shuffle=True,	random_state=2311)	
	

#	loop	through	train	sets	and	test	sets,	demonstrating	the	split	on	‘Beer_Type’	
i	=	1	
for	train_index,	test_index	in	kfold.split(beer_train[[‘IBU’,	‘ABV’]],	beer_train[‘Beer_Type’]):	
				#	print	the	beer	type	splits	
				print(“Split”,i)	

				print(“CV	Training	Set	Split”)	

				print(beer_train.iloc[train_index].Beer_Type.value_counts(normalize=True))	
				print()	

				print(“CV	Holdout	Set	Split”)	

				print(beer_train.iloc[test_index].Beer_Type.value_counts(normalize=True))	
				print(“+++++++++++++++”)	

				i	=	i	+	1	
 
Notes on the above code: 

1. This assumes you’ve previously imported the beer data set discussed in prior lessons 
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22. k-Nearest Neighbors Classifier 
Lecture Notebooks/Supervised Learning/Classification/2. K Nearest Neighbors 

Classifier.ipynb 
 
The k-nearest neighbors classification algorithm is delightfully straightforward: 

1. Input a point you would like to predict on with features "∗ 
2. Find the k closest points to "∗ in the training set, its “nearest neighbors” 

o Note that the k number of points used here is a hyperparameter for the KNN algorithm 
3. Tabulate the categories of these nearest neighbors, and whichever category receives the most “votes” is 

what KNN predicts for point "∗ 
o If there is a tie between categories, the prediction is chosen at random from the tied classes 

 
Example KNN classifications for point x: 

   
         Red Circle         Green Triangle    Randomly Assigned 

 
Note that while we have used Euclidean distance in this simple illustration, we can in principal use any distance 
metric we’d like 

• Also while here we have given each neighbor an equally weighted vote, we could weight the votes 
• One scheme for weighing votes is to use the inverse of the distance to our point of interest 

 
We code up KNN using sklearn’s KNeighborsClassifier, manually choosing a value for the number of 
neighbors hyperparameter 

• A fun fact to note about KNN is that it isn’t actually “fitting” anything per se, since it’s really just 
recording the location of your training set in the given parameter space 

• In practice you’ll usually want to optimize this with some form of validation/cross-validation test 
 
Note that, because the model does not have a proper training step, the size of the training set does not actually 
impact the training time for the KNN model 

• The time it takes the KNN to make a prediction, however, is significantly impacted by the size of the 
data set 

 
For many applications it is more useful to have the probability that an observation will be a certain class, rather 
than the predicted class itself 

• We can access this using the predict_proba method 
• Note that for unweighted KNN this returns the fraction of nearest neighbors that are of each class 

 
One of the most common ways to judge a classifier’s performance is to look at its accuracy, or the proportion of 
all predictions made that are correct 

• This is sort of the general default performance metric for classifiers 
• We’ll discuss other potentially useful performance metrics in the next lesson 

 
Bias-Variance Tradeoff for KNN: 
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• When I = 1, each point will be assigned the class of the training point to which it is closest 
o Such a model would thus be very sensitive to nuances of the training data and have high variance 

• When I = 2 (where 2 is the total number of points in the training set) a new data point is predicted 
using the entire data set 

o Such a model will yield the same prediction for all points, whichever class is most represented in 
the training set, and thus have minimal variance (and by extension enormous bias) 

• In general, lower values of k yield higher variance, while higher values of k yield higher bias 
 
Sample Code: 

#	get	the	iris	data	and	organize	it	into	a	dataframe	
from	sklearn.datasets	import	load_iris	
iris	=	load_iris()	
iris_df	=	pd.DataFrame(iris[‘data’],columns	=	[‘sepal_length’,	‘sepal_width’,	‘petal_length’,	‘petal_width’])	
iris_df[‘iris_class’]	=	iris[‘target’]	
					

#	import	KNN	package	
from	sklearn.neighbors	import	KNeighborsClassifier	
	

#	make	the	model	object	
knn	=	KNeighborsClassifier(5)	
#	fit	the	model	object	
knn.fit(iris_train[[‘sepal_width’,	‘sepal_length’,	‘petal_width’,	‘petal_length’]],	iris_train[‘iris_class’])	

	

#	predict	on	the	training	set	
knn.predict(iris_train[[‘sepal_width’,	‘sepal_length’,	‘petal_width’,	‘petal_length’]])	

	

#	define	an	accuracy	function	
def	accuracy(true,	predicted):	
				return	np.sum(true==predicted)/len(predicted)	
#	get	training	accuracy	for	our	model	
accuracy(iris_train[‘iris_class’],	knn.predict(iris_train[[‘sepal_width’,	‘sepal_length’,	‘petal_width’,	‘petal_length’]]))	

	

#	get	predict_proba	output	
knn.predict_proba(iris_train[[‘sepal_width’,	‘sepal_length’,	‘petal_width’,	‘petal_length’]])	

 
Notes on the above code: 

• This code is built to classify data from the sample iris data set, which provides values for sepal 
length/width and petal length/width along with classification as one of three different types of irises: 

o (0) setosa, (1) versicolor, or (2) virginica 
• Recall the importance of making a stratified train/test split for this kind of analysis 
• Here prob_a returns three columns, which contain the probability that, based on votes from the nearest 

neighbors, points in the training set are either setosa (class 0), versicolor (class 1), or virginica (class 2) 
o The probability in column 0 corresponds to the setosa (class 0) classification, and so on 

• We can use distance-weighted votes by including weights=‘distance’ in the KNeighborsClassifier() call 
  



 42 

23. The Confusion Matrix, Precision, and Recall 
Lecture Notebooks/Supervised Learning/Classification/3. Confusion Matrix Precision and 

Recall.ipynb 
 
Sometimes accuracy is a misleading metric 

• For example, if your dataset has an extreme split of, say, 90% in class 0 and 10% in class 1, you could 
build a classifier with 90% accuracy by simply labeling everything as class 0 

• Clearly this is not what we want for many analysis applications 
 
Additional performance metrics can be derived from the confusion matrix, illustrated below for a binary 
classification problem 

 
 
The diagonal of the confusion matrix represents data points that are predicted correctly by the algorithm (the 
“true negatives” and “true positives”), while the off-diagonal represents those that are incorrectly predicted (the 
“false positives” and “false negatives”) 

• Note that the confusion matrix can easily be extended for multiclass problems by adding rows and 
columns, although you lose the precise “false positive”-style nomenclature when doing so 

 
Two popular metrics derived from the confusion matrix are the algorithm’s precision and recall: 

precision = TP
TP + FP 								and								recall =

TP
TP + FN 

 
Precision asks “out of all points predicted to be class 1, what fraction actually were class 1” 

• Essentially, how much should you trust the algorithm when it says something is class 1 
 
Recall asks “out of all the actual data points in class 1, what fraction did the algorithm correctly predict”? 

• This estimates the probability that the algorithm correctly detects class 1 data points 
 
We can obtain a confusion matrix for a classifier using sklearn’s confusion_matrix 

• We could calculate precision and recall from this easily enough, or we can use the precision_score and 
recall_score functions 

 
We may also be interested in other, somewhat easier to remember, performance metrics; for example: 

• Given that an observation is a true positive 
o What is the probability that we correctly predict it is a positive? 

§ This is the true positive rate (TPR), and is the same as recall 
o What is the probability that we incorrectly predict it is a negative? 

§ This is the false negative rate (FNR) 
• Given that an observation is a true negative 

o What is the probability that we correctly predict it is a negative? 
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§ This is the true negative rate (TNR) 
o What is the probability that we incorrectly predict it is a positive? 

§ This is the false positive rate (FPR) 
 
Their associated formulae are: 

TPR = TP
TP + FN , FNR = FN

TP + FN , TNR = TN
TN + FP , FPR = FP

TN + FP 

 
Depending on the application, we may be interested in optimizing one (or more) of these measures 

• For example, if we were trying to predict whether someone has a serious disease we may be most 
interested in the false negative rate 

 
Sample Code: 

#	import	the	confusion	matrix	from	sklearn	
from	sklearn.metrics	import	confusion_matrix	
	

#display	the	confusion	matrix	
confusion_matrix(y_train,	y_train_pred)	

	

#	record	the	confusion	matrix	elements		
TN	=	confusion_matrix(y_train,	y_train_pred)[0,0]	
FP	=	confusion_matrix(y_train,	y_train_pred)[0,1]	
FN	=	confusion_matrix(y_train,	y_train_pred)[1,0]	
TP	=	confusion_matrix(y_train,	y_train_pred)[1,1]	
	

#	calculate	and	print	recall	and	precision	
print(“The	training	recall	is”,	np.round(TP/(FN+TP),4))	
print(“The	training	precision	is”,	np.round(TP/(FP+TP),4))	
	

#	import	precision	and	recall	
from	sklearn.metrics	import	precision_score,	recall_score	
	

#	print	precision	and	recall	
print(“The	training	recall	is”,	np.round(recall_score(y_train,	y_train_pred),4))	

print(“The	training	precision	is”,	np.round(precision_score(y_train,	y_train_pred),4))	

	

#	TPR	
print(“The	training	true	positive	rate	is”,	np.round(TP/(TP+FN),4))	
#	FNR	
print(“The	training	false	negative	rate	is”,	np.round(FN/(TP+FN),4))	
#	TNR	
print(“The	training	true	negative	rate	is”,	np.round(TN/(TN+FP),4))	
#	FPR	
print(“The	training	true	positive	rate	is”,	np.round(FP/(FP+TN),4))	

  
Notes on the above code: 

• This assumes you’ve already built a classifier from which to get training set predictions y_train_pred 
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24. Logistic Regression 
Lecture Notebooks/Supervised Learning/Classification/4. Logistic Regression.ipynb 

 
We’ll be using logistic regression for binary classification 

• These are classification problems with only two classes, typically coded as 0 or 1 
• Normally the class denoted as 1 is something we want to identify 

o For example, someone that has a disease or someone that qualifies for a loan 
• Note that logistic regression can be adapted to multi-class classification problems fairly easily, but we 

won’t explore that here 
 
Logistic regression is a regression algorithm, which means we need to deal with the fact that regression 
algorithms are used to predict continuous outcomes while binary classification is in no way continuous 

• Instead of modeling the output class itself, logistic regression models the probability that a particular 
data point is an instance of class 1 

 
This is a bit abstract, so let’s look at some pictures 

    
 
While the vertical axis on the above left plot says “class,” we could just as easily label it the “probability the 
instance is 1” since in this case where we know the class of each data point, the probability can be only 0 or 1 
 
Now suppose you have a new data point for which you only have the vector of predictors " 

• We’re interested in the probability that this point has class # = 1, which we’ll call î(# = 1|") = í(") 
• A continuous variable, í(") can take on all values between (and including) 0 and 1 

 
We’ll model the probability in logistic regression with a sigmoid curve (above right plot), with the general form 

%(+) = 1
1 + f.6 

This function stays between 0 and 1 and transforms from 0 to 1 in a continuous manner 
• Just what we need for regression! 

 
The model that is used in logistic regression is 

í(") = 1
1 + f.OT , where 

- = (-!, -", … , -*)- is a column of vector coefficients, and " has been extended to include a column of ones 
• Rather than using MSE, this model is fit using maximum likelihood estimators 
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Logistic regression can be implemented in sklearn with LogisticRegression, and after doing so we obtain a fit 
that looks something like this 

  
 
The standard approach for generating classifications is to choose a probability cutoff at or above which we 
classify points as class 1, and below which we classify points as class 0 

• A natural choice might be í(") ≥ 0.5, but ultimately this is a hyperparameter that you are free to vary 
• This is an example of a decision boundary 

 
One particularly nice aspect of this algorithm is that, unlike some others that we’ll touch on, we can directly 
interpret its results 
 
To understand how, we first rearrange our model a bit 

í(") = 1
1 + f.OT → log¢ í(")

1 − í(")£ = "- 

 
The expression í(")/71 − í(")8 is known as the odds of the event # = 1, so the statistical model for logistic 
regression is really just a linear model for the log odds of being class 1 
 
Consider the simple single-feature (+) model fit in the plot above 

log ¢ í(+)
1 − í(+)£ = -! + -"+, or	Odds|+ = §fT" 

 
If we increase + from, say, • to • + 1, a 1 unit increase, then our odds are fT" units larger (or smaller, 
depending on the value of -"), as demonstrated here: 

Odds|+ = • + 1
Odds|+ = • = §fT"(<U")

§fT"< = fT" 

 
There are a number of key assumptions made by this model that you will want to validate when working with 
real-world data: 

1. Each sample must be independent from all other samples 
2. When using multiple predictors, they shouldn’t be correlated 
3. The log odds depend linearly on the predictors 
4. You should have a fairly large data set to work with 

 
You can also implement regularization with logistic regression (ridge, lasso or elastic net) 

• In fact, by default sklearn’s LogisticRegression is ridge logistic regression by default 
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Sample Code: 
#	import	LogisticRegression	
from	sklearn.linear_model	import	LogisticRegression	
	

#	make	model	object	
log_reg	=	LogisticRegression()	
#	fit	the	model	
log_reg.fit(X_train.reshape(-1,1),	y_train)	
	

#	call	predict	and	prob_a	
log_reg.predict(X_train.reshape(-1,1))	
log_reg.predict_proba(X_train.reshape(-1,1))	
	

#	set	a	cutoff	probability	for	classification	
cutoff	=	.5	
#	store	prediction	probabilities	
y_prob	=	log_reg.predict_proba(X_train.reshape(-1,1))[:,1]	
#	assign	classification	based	on	the	cutoff	
y_train_pred	=	1*(y_prob	>=	cutoff)	
	

#	print	the	accuracy	
print(“The	training	accuracy	for	a	cutoff	of”,	cutoff,	“is”,	np.sum(y_train_pred	==	y_train)/len(y_train))	
	

print(“A	0.1	unit	increase	in	our	feature	multiplies	the	odds	of	being	classified	as	1	by	”	+		
									str(np.round(np.exp(.1*log_reg.coef_[0][0]),2)))	

  
Notes on the above code: 

• As in prior lessons, we need to include reshape(-1,1) because X_train in this example is one dimensional 
• Note that (y_prob >= cutoff) gives us an array of Trues and Falses 

o We then convert it into an array of 1s and 0s when using 1*(y_prob >= cutoff) 
• Here prob_a returns two columns, the first of which contains the probability that points are class 0, and 

the second of which contains the probability that they are class 1 
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25. The ROC Curve 
Lecture Notebooks/Supervised Learning/Classification/5. ROC Curve.ipynb 

 
While TPR and FPR are constant for a given classification, as we saw in the previous lesson they can have 
different classifications if we choose different probability thresholds 

• Choosing í = 0.4, for example, will give a different classification from í = 0.5 
 
The idea of examining how the TPR and FPR change with different prediction probability thresholds underlies 
the “receiver operating characteristics curve,” or more commonly the ROC curve, which plots TPR against FPR 

• Recall that ideally we’d have a TPR of 1 and a FPR of 0 
 
A perfect classifier will have an ROC curve that traces the upper left corner of the unit square, although this will 
generally not be attainable in practice 

• Note that we often compare our ROC curves to the line # = + since this is what a random guess 
algorithm would produce 

 
We can compare the ROC curves of multiple algorithms by computing the area under the ROC curve, often 
abbreviated AUC (area under the curve) 

• When comparing algorithms, we’d choose that which has the largest AUC score 
o For example, in the above figure the KNN classifier has an AUC of  0.9906, so we would choose 

it over the Logistic Regression classifier and its 0.9885 AUC score 
o You might make exceptions in practice if computationally expensive algorithms or those with 

long run times provided only a minor improvement 
• We do not need to calculate this ourselves, although we certainly could if we felt so inclined 

o Instead we’ll use sklearn’s auc, roc_curve, and roc_auc_scoree functions 
• Note that the AUC for the random guess algorithm’s # = + ROC curve is 0.5 

 
Sample Code: 

#	make	simple	TPR	and	FPR	functions	
def	TPR(conf_mat):	
				return	conf_mat[1,1]/np.sum(conf_mat[1,:])	
def	FPR(conf_mat):	
				return	conf_mat[0,1]/np.sum(conf_mat[0,:])	
	

#	generate	the	ROC	curve	
cutoffs	=	np.arange(0,1.01,.01)	
fprs	=	[]	
tprs	=	[]	
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for	cutoff	in	cutoffs:	
				y_pred	=	1*(y_prob	>=	cutoff)	
				fprs.append(FPR(confusion_matrix(y_train,	y_pred)))	

				tprs.append(TPR(confusion_matrix(y_train,	y_pred)))	

	

#	plot	the	ROC	curve	
plt.figure(figsize=(10,8))	
plt.plot(fprs,	tprs)	

plt.plot(np.linspace(0,1,10),	np.linspace(0,1,10),	‘k—’,	alpha=.8,	label=“Random	Guess”)	
	

plt.xlabel(“False	Positive	Rate”,	fontsize=18)	
plt.ylabel(“True	Positive	Rate”,	fontsize=18)	
plt.xticks(fontsize=16)	
plt.yticks(fontsize=16)	
plt.legend(fontsize=16)	
plt.title(“The	ROC	Curve”,	fontsize=20)	
plt.show()	

	

#	now	demonstrate	sklearn’s	functions,	starting	by	importing	them	
from	sklearn.metrics	import	auc,	roc_curve,	roc_auc_score	
	

#	use	auc	to	find	the	area	under	the	curve	we	found	above	
auc(fprs,	tprs)		

	

#	generate	an	ROC	curve	with	sklearn’s	roc_curve	function	
fprs,	tprs,	thresholds	=	roc_curve(y_train,	y_prob)	
	

#	use	roc_auc_score	to	get	an	AUC	score	directly	
roc_auc_score(y_train,	y_prob)	

	

print(“The	logistic	regression	model	has	a”,		

						np.round(roc_auc_score(y_test,	log_reg.predict_proba(X_test.reshape(-1,1))[:,1]),4),	
						“AUC	on	the	training	data.”)	

print(“The	knn	model	has	a”,	

						np.round(roc_auc_score(y_test,	knn.predict_proba(X_test.reshape(-1,1))[:,1]),4),	
						“AUC	on	the	training	data.”)	

  
Notes on the above code: 

• This assumes you’ve already done a train/test split and built some classifier which gave you the 
predictions in y_pred and the probabilities in y_prob 

o The final bit of code assumes that you’ve gone on to fit a logistic regression and a KNN 
classifier using roc_curve 

§ This is what’s shown in the plot above 
§ Note that in practice you’d probably want to use CV validation for something like this 

• The roc_curve function essentially automates what we did in the cutoff loop 
o Similarly, roc_auc_score gives you the AUC score directly without you having to bother with 

any of the other steps 
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26. Bayes’ Rule Reminder 
Lecture Notebooks/Supervised Learning/Classification/6. Bayes Rule Reminder.ipynb 

 
Assume that we have some probability space Ω 
 
Conditional Probability 

For events ` and ^ with î(^) ≠ 0, we define the probability of ` conditional on ^ as 

î(`|^) = î(` ∩ ^)
î(^)  

 
Law of Total Probability 

If "̂, ^$, … , %̂ are disjoint events such that ∪#&"%
#̂ = Ω, then for any event ` it holds that 

î(`) =3î(` ∩ #̂)
%

#&"

 

Note that what we’re saying here – in English – is that we have a set of events ^ that don’t overlap with one 
another (they’re disjoint) and cover the whole space (the ∪ condition) 

 
Bayes’ Rule 

For events ` and ^ with î(^) ≠ 0, Bayes’ rule (or the Bayes-Price theorem) states that 

î(`|^) = î(^|`)î(`)
î(^)  

“The probability of A occurring given that B occurs is equal to the probability that B occurs given that A 
occurs times the probability that A occurs divided by the probability that B occurs” 
 

 
This can then be taken a step further using the law of total probability 

î(`|^) = î(^|`)î(`)
î(^ ∩ `) + î(^ ∩ `8) =

î(^|`)î(`)
î(^|`)î(`) + î(^|`8)î(`8) , where	`

8 = Ω − ` 

 
This is a bit abstract, but we’ll put it into practice in our next few lessons 
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27. Linear Discriminant Analysis (LDA) 
Lecture Notebooks/Supervised Learning/Classification/7. Linear Discriminant 

Analysis.ipynb 
 
Although it was originally proposed by Fisher in 1936 as a supervised dimension reduction technique, here 
we’re going to look at linear discriminant analysis as it applies to classification, its more common modern use 
 
Suppose we have a set of ! features collected in a matrix " and an output variable # that can take on any of § 
possible categories 

• In the case of logistic regression, where § = 2 (that is, # was either class 1 or class 0), we modeled 
î(# = 1|" = "∗) in order to make predictions 

 
We can use Bayes’ rule to rewrite this expression as 

î(# = 1|" = "∗) = ™8%8("∗)
∑ ™:%:("∗)8
#&"

, 
where ™8 denotes the prior probability that a random observation comes from the cth class and %8 ≡ î("|# = u) 

• This form assumes that " is a qualitative variable, but it can be easily rewritten if " is continuous 
 
When fitting this model we estimate the ™: values by taking the fraction of the sample set belonging to each of 
the § classes 

• So if 1/3 of your sample belongs to class 1, then ™" = 1/3, and so on 
• We’ll need to make some assumptions to estimate the %"(") values, however 

 
In linear discriminant analysis we assume that "|# = u is Gaussian 
 
For a single feature (the ! = 1 case) this means that %8(") is 

%8(") =
1

√2™r8
exp ≠− 1

2r8$
(" − C8)$Æ, 

which is the probability density function of a normal random variable with mean C8 and standard deviation r8 
• Note that in linear discriminant analysis we assume that r" = r$ = ⋯ = r8 = r 

 
Under this assumption we find the following estimate for î(# = u|") 

î(# = u|") =
™8 1
√2™	exp ≠−

1
2r8$ (" − C8)

$Æ

∑ ™: 1
√2™	exp ≠−

1
2r8$ (" − C:)

$Æ8
#&"

 

 
We can then estimate C8 and r as 

Ĉ8 =
1
28

3 "#
#:W#&8

, rK$ = 1
2 − §3 3 ("# − Ĉ8)$

#:W#&8

X

8&"

 

 
We typically make classifications in this setting by choosing the class, u, for which î(# = u|") is largest 

• This is the í = 0.5 cutoff case for a situation with 2 classes like we’ve looked at previously, it just 
becomes more complicated here as we expand the number of classes we consider 

• Through some algebra and log manipulations you can show that this is equivalent to choosing the class, 
u, for which the discriminant function is largest 

 
The discriminant function for class u, that we estimate using the Ĉ8 and rK$ values, is 
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∞8 = " C8r$ −
C8$
2r$ + log(™8) 

 
Note that the discriminant is a linear function of ", with a slope C8/r$ and an intercept −C8$/2r$ + log(™8) 

• Hence the name, linear discriminant analysis 
 
In practice you can code up LDA using sklearn’s LinearDiscriminantAnalysis function 

• The associated notebook also provides a worked example showing how LDA works in practice 
 
The procedure is fairly straightforward (illustrated below using “petal length” to classify iris types): 

1. Obtain the ™ factor for each class by measuring how much of the total sample each class represents 
o In this case the 3 classes are evenly represented, so all are 1/3 

2. Measure the mean for each class and calculate the assumed-to-be uniform standard deviation 
o This assumption of uniform variance will be important to validate in practice 

3. Calculate the associated ∞8 discriminant lines for each class using the formula above 
4. Identify the ranges where each class has the largest ∞8, and use these as your predictions 

o I.e., the yellow line is on top from about 3-5 cm, so class 1 would be the predicted class for that 
range of feature-space, and so on 

 
 
When we have multiple features we’d like to use when predicting # (the ! > 1 case), we assume that %8(") is a 
probability density function for a multivariate normal distribution with a class-specific mean vector and a 
common covariance matrix 

• In other words, each column of " is assumed to be a normal distribution whose mean is dependent upon 
the class you are looking at, and the columns of " also have some correlation with one another that is 
identical across the possible classes 

• This is denoted as "|# = u~≤(C8 , Σ), where C8 = 0("|# = u) and Σ = cov(") 
 
In this case %8(") is given as follows: 

%8(") =
1

(2™)*/$|Σ|"/$ exp¢−
1
2 (" − C8)

-Σ."(" − C8)£, 
which will result in a class-specific discriminant function of: 

∞8(") = "-Σ."C8 −
1
2C8

-Σ."C8 + log(™8) 
 
Estimation of C8 and Σ are similar to the single feature case, and for any given point in feature-space, "∗, the 
LDA classifier will select the class, u, with the highest estimated ∞8("∗) as its prediction 
 
As an example, if we extend the iris classifier example from using just the “petal length” feature to also use the 
“petal width” feature, we get the prediction regions shown below using multi-feature LDA classification 
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• See the associated notebook for the code used to generate the region plot 
• The lines that mark the boundary between these regions are an example of decision boundaries 

 
 
Sample Code: 

#	import	LDA	package	
from	sklearn.discriminant_analysis	import	LinearDiscriminantAnalysis	
	

#	make	the	model	object	
LDA	=	LinearDiscriminantAnalysis()	
#	fit	model	object		
LDA.fit(X_train.petal_length.values.reshape(-1,1),	y_train)	
	

#	demonstrate	predict_proba	
LDA.predict_proba(X_train.petal_length.values.reshape(-1,1))	
	

#	now	try	LDA	using	two	features	
#	make	new	model	object	
LDA	=	LinearDiscriminantAnalysis()	
#	fit	the	new	model	
LDA.fit(X_train[[‘petal_width’,	‘petal_length’]],	y_train)	

	

#	demonstrate	predict_proba	for	two	features	
LDA.predict_proba(X_train[[‘petal_width’,	‘petal_length’]])	

 
Notes on the above code: 

• This assumes you’ve already imported the iris data and done a train/test split 
• For the single-feature example here, we used LDA with the “petal length” feature since it seemed to 

nicely separate the data among our three classes 
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28. Quadratic Discriminant Analysis (QDA) 
Lecture Notebooks/Supervised Learning/Classification/8. Quadratic Discriminant 

Analysis.ipynb 
 
Suppose we are trying to predict a variable # that can take on any of § possible classes using ! features 
collected in a variable " 
 
For LDA we assumed that %8(") was the density function for a multivariate normal distribution with a class-
specific mean vector C8 and a covariance matrix common across all classes, Σ, so we had "|# = u~≤(C8 , Σ) 
 
If we’re working with a sufficiently large sample, we can relax the assumption that the covariance matrix is the 
same across all § classes, so that we instead have "|# = u~≤(C8 , Σ8) 

• Here Σ8 is the covariance matrix of "|# = u 
• Conceptually, this means that we are no longer assuming the distributions of our various classes have 

equal variances 
• When we relax this assumption the model is called Quadratic Discriminant Analysis (QDA) 

 
When we perform QDA we predict "∗ to be the class which maximizes the following discriminant function: 

∞8("∗) = −12 ("
∗ − C8)-Σ8."("∗ − C8) −

1
2 log(|Σ8|) + log(™8) 

= −12"
∗-r8.""∗ + "∗-r8."C8 −

1
2C8

-r8."C8 −
1
2 log(|Σ8|) + log(™8) 

 
This is implemented in sklearn using QuadraticDiscriminantAnalysis 
 
A key difference between LDA and QDA classifiers is the shape of the decision boundaries 

• LDA decision boundaries are restricted to linear separation 
o In 2-D, this means that the feature plane is split using lines 
o In 3-D, using planes, and in higher dimensions, using hyperplanes 

• QDA decision boundaries can be nonlinear, giving more flexibility 
• See example figures below showing decision boundaries for the iris data set 

o The code to produce these plots can be found in the associated notebook 

    
 
Recalling our prior discussion of the bias-variance tradeoff, LDA has more bias, while QDA has more variance 

• Which you want to use in practice will depend on your data set 
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o Particularly since you need fairly large amounts of training data to reliably use QDA 
• In the iris data example above, the LDA model would probably generalize better 

o QDA seems to be overfitting, which makes sense given the relatively small data set 
 
When to use LDA more generally: 

• Because we don’t have to estimate as many parameters, LDA works better for smaller data sets 
o In LDA we only have to estimate !(. + 1)/2 covariances, while in QDA you have to estimate 

§!(! + 1)/2 of them 
• LDA works better if you think your data can be mostly separated by linear decision boundaries 

o You might have an intrinsic reason to think this, or notice it when examining training data 
 
When to use QDA more generally 

• As mentioned above, QDA requires a large data set to properly fit 
• QDA is preferable to LDA if you suspect that the data is better separated by a nonlinear decision 

boundary 
 
Sample Code: 

#	import	QDA	package	
from	sklearn.discriminant_analysis	import	QuadraticDiscriminantAnalysis	
	

#	make	the	model	object	
QDA	=	QuadraticDiscriminantAnalysis()	
#	fit	model	object		
QDA.fit(X_train[[‘petal_width’,	‘petal_length’]],	y_train)	

	

#	demonstrate	predict_proba	
QDA.predict_proba(X_train[[‘petal_width’,	‘petal_length’]])	

 
Notes on the above code: 

• As with the LDA code, this assumes you’ve already imported the iris data and done a train/test split 
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29. Naïve Bayes Classifier 
Lecture Notebooks/Supervised Learning/Classification/9. Naive Bayes Classifier.ipynb 

 
For one last time, suppose we are trying to predict a variable # that can take on any of § possible classes using 
! features collected in a variable " using Bayes’ rule to estimate î(# = u|"): 

î(# = 1|" = "∗) = ™8%8("∗)
∑ ™:%:("∗)8
#&"

 

 
In order to make this estimate, we have to 

1. Estimate the § values of ™8, which is relatively straightforward 
2. Estimate § m-dimensional density functions %8("), which is considerably less so 

 
In LDA and QDA we made some strong assumptions regarding the form of the density functions which allowed 
us to take a hard estimation problem and make it much easier 

• However, these are strong assumptions that could be way off 
 
Rather than assuming a set form for the density, the naïve Bayes classifier takes a different approach, assuming 
that within a given class, u, each of the ! features are independent 
 
Thus, with %8$7"/8 denoting the probability density function for "/ among observations of the cth class, we write 

%8(") = %8"("") × %8%("$) × ⋯%8&("*) 
And under this assumption, we have 

î(# = 1|" = "∗) = ™8%8"(""∗) × %8%("$∗) × ⋯%8&("*∗ )
∑ ™:%:"(""∗) × %:%("$∗) × ⋯%:&("*∗ )8
#&"

 

 
Assuming independence between the feature variables allows us to turn the difficult problem of estimating an 
m-dimensional probability distribution (which involves estimating both m marginal distributions and a joint 
distribution) into a problem where we have to estimate just m independent probability distributions 

• Much more tractable! 
 
When it comes to estimating the %8$ we typically assume some kind of distribution and then estimate the 

parameters for that distribution accordingly, for example: 
• If "/ is quantitative, we typically assume it is a normal distribution 

o Note that this differs from LDA and QDA because those do not assume independence, hence 
their associated covariance matrices Σ or Σ8 

• If "/ is categorical, we could just use a Bernoulli distribution (think biased coin toss) estimating the 
value of í using the proportion of observations where # = u for each possible value of "/ 

 
Assuming independence is not always a good assumption in the sense that some of the features may well be 
related to one another 

• However, even if the assumption does not hold, we can still get decent-to-good classifiers using a naïve 
Bayes classifier 

• This can be particularly true if we have insufficient data to reasonably estimate a joint probability 
distribution 

• We can think of this assumption as adding bias to our model 
 
Naïve Bayes is implemented in sklearn with a few different methods found in the naive_bayes module 
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• When working with quantitative features like the petal length and width features found in the iris data 
set, we’ll use the GaussianNB model 

• If we instead had features of categorical variables, we’d likely use the BernoulliNB model 
 
As with QDA, the naïve Bayes classifier allows for non-linear decision boundaries 

• Additionally, by introducing some bias we are likely producing a model that generalizes better than that 
of QDA given the relatively small data set in this example  

• See associated notebook for the code to produce these plots for the iris data set 

 
 
Sample Code: 

#	import	GaussianNB	
from	sklearn.naive_bayes	import	GaussianNB	
	

#	make	the	model	
nb	=	GaussianNB()	
#	fit	the	model	
nb.fit(X_train[[‘petal_width’,	‘petal_length’]],	y_train)	

	

#	demonstrate	predict_proba	
nb.predict_proba(X_train[[‘petal_width’,	‘petal_length’]])	

 
Notes on the above code: 

• As in prior lessons, this assumes you’ve already imported the iris data and done a train/test split 
 
  



 57 

30. Multiclass Classification Metrics 
Lecture Notebooks/Supervised Learning/Classification/10. Multiclass Classification 

Metrics.ipynb 
 
One approach (that is admittedly bit of a cop out) would be to simplify things back down to a binary 
classification and then use the same metrics discussed previously 

• For example, if you have NFL play data coded as a successful/unsuccessful run or pass play, you might 
be able to simplify things so that you only have to classify successful vs. unsuccessful plays 

• Obviously this is application-dependent and will not work for the general case 
 
More generally, the confusion matrix we discussed earlier naturally extends to additional classes like so 

 
 
Although we do lose our easily interpreted nomenclature from earlier when we move to the multiclass case 
 
We can obtain a confusion matrix for a multiclass classifier using sklearn’s confusion_matrix function, the same 
as for a binary classifier 
 
Another potentially useful metric for multiclass classification is cross-entropy, sometimes referred to as log-loss 

• This is essentially a measure of how well two probability distributions align with one another 
 
Here we compare the “distribution” of the sample to the estimated probability distribution from the model 

• For the sample, we take “distribution” to mean a set of indicator functions #8 = 1W&8 
 
So for each observation, ¥, we compute 

−3#8,# log7í8,#8
X

8&"

 

where § is the total number of possible classes and í8,# is the model probability that observation ¥ is of class u 
• Essentially the í8,# terms are found using the predict_proba output for your given model 
• The total cross-entropy for the sample is the total sum for all ¥121 observations 

 
The only term that contributes to the sum in the above expression is the one corresponding to the class that 
observation ¥ actually is, for example let’s say à 

• If we know that the class of ¥ is à, then observation ¥ contributes − log7í:,#8 to the total cross-entropy 
• When í:,# is closer to 1, − log7í:,#8 is closer to 0 

o So when our model is confident in its correct prediction, it contributes little to the cross-entropy 
• Conversely, as í:,# → 0, then − log7í:,#8 → ∞ 
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o When our model is confidently incorrect, it contributes significantly to the cross-entropy 
o Thus, cross-entropy is notable because it punishes models that are confidently incorrect 

 
Since we want to assign observation ¥ to its actual class, what we want is a value of í#,/ that is close to 1 

• The closer to 1 each of the í:,# terms are, the closer to 0 our total entropy is 
• Thus, a good model is one with low cross-entropy 

 
Cross-entropy can be coded up manually, but in practice you’ll likely want to use sklearn’s log_loss function 

• Note that in practice you’ll likely want to use cross validation when checking cross-entropy 
• See associated notebook for a worked out example doing this CV exercise for the LDA, QDA, and naïve 

Bayes classifiers trained on the iris data set we’ve been looking at in prior lessons 
 
Sample Code: 

#	import	confusion	matrix	
from	sklearn.metrics	import	confusion_matrix	
	

#get	a	confusion	matrix	(no	different	from	binary	classification)	
confusion_matrix(	y_train,		LDA.predict(X_train[[‘petal_width’,	‘petal_length’]])	)	

	

#	make	a	confusion	matrix	dataframe	
pd.DataFrame(	confusion_matrix(y_train,	LDA.predict(X_train[[‘petal_width’,	‘petal_length’]])),	

columns	=	[‘Predicted	0’,	‘Predicted	1’,	‘Predicted	2’],	index	=	[‘Actual	0’,	‘Actual	1’,	‘Actual	2’]	)	
	

#	let’s	do	a	manual	cross-entropy	calculation	
#	generate	the	ycs	
ycs	=	pd.get_dummies(y_train).to_numpy()	
#	generate	the	pcs	
pcs	=	LDA.predict_proba(X_train[[‘petal_width’,	‘petal_length’]])	
	

#	take	the	sum	of	each	rows	product	
-	np.sum(ycs	*	np.log(pcs),	axis=1)	
#	now	sum	that	sum	to	get	the	total	cross-entropy	for	this	LDA	model	
np.sum(-	np.sum(ycs	*	np.log(pcs),	axis=1))	
	

#	now	do	this	with	sklearn,	starting	with	an	import	
from	sklearn.metrics	import	log_loss	
#	implement	log_loss	on	the	training	set	
log_loss(y_train,	pcs,	labels	=	[0,1,2],	normalize=False)	

 
Notes on the above code: 

• This assumes you’ve already fit an LDA classifier, and it’d work just as well with a different classifier 
• We gave log_loss the pcs output since we’d already calculated it in the sample code, but if we hadn’t 

done so we could have simply put the predict_proba call there 
• The labels parameter is just a list of the labels in your data set 
• If we don’t set normalize to False we instead get the total cross-entropy divided by the number of 

elements in y_train, an average of sorts 
o In practice it won’t make a difference which convention we use as long as we’re consistent 
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31. Principal Components Analysis I 
Lecture Notebooks/Unsupervised Learning/Dimensionality Reduction/1. Principal Components 

Analysis I.ipynb 
 
Why even bother with dimensionality reduction? 

• Perhaps the dimension is too large for your algorithm to run efficiently 
• Sometimes you want to get rid of (or mitigate) some noise-inducing variables 
• Other times you just want to better visualize the data in 2D or 3D 

 
In the next few lessons we will be discussing perhaps the most popular dimensionality reduction technique in 
data science, principal component analysis (PCA) 
 
When you reduce the dimension of a data set you are inherently losing information, so you want to ensure that 
you do it in a way that "retains as much information as possible" 

• PCA tackles this problem in a very statistical manner 
 
There's an idea in statistics that the information of a data set is located within that data set's variation, and thus 
when you reduce the dimension of a data set, you want to project your data onto a lower dimensional space that 
captures as much of the original variance in the data as possible 

• Thinking in terms of optimization, your goal is to project into a lower dimensional hyperplane in a way 
that maximizes variance 

 
Here’s a heuristic algorithm for PCA 

1. Center your data so that each feature has 0 mean, this is done for convenience 
2. Find the direction in space along which projections have the highest variance 

o This is the first principal component 
3. Find the direction orthogonal to the first principal component that maximizes variance 

o This is the second principal component 
4. Continue in this way, so that the kth principal component is the variance-maximizing direction 

orthogonal to the previous I − 1 components 
 
We can code this up using sklearn’s PCA function, allowing us to illustrate the method in the example below 

   
 
The two vectors ô" and ô$ drawn above are called the component vectors of the PCA 

• To transform our data, we take the scalar projection of each observation onto the component vectors, as 
illustrated by the sample point shown by the red x marker 
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Now let’s briefly summarize the mathematical details underpinning PCA 
 
Suppose we have 2 observations of ! features, let "", "$, … , "* be 2 by 1 vectors containing the observations 
of each of the ! features, and for ease of notation assume each has been centered to have mean 0 

• We’ll restrict ourselves to the case of finding the first principal component, noting that the others can be 
found in a similar fashion 

 
Let " = (""|"$| … |"*) be an 2 by ! feature matrix, and note that our goal is to find ô = (ô", ô$, … , ô*)- 
with ‖ô‖ = 1 such that Var(ô""" +ô$"$ +⋯+ô*"*) = Var("ô) is maximized 

• Note that because ‖ô‖ = 1, "ô is a vector of scalar projections of the rows of " onto ô 
 
Because we have centered the columns of ", we have Var("ô) = 0(ô-"-"ô) = ô-0("-")ô = ô-Σô, 
where Σ is the covariance matrix of ", and our constrained optimization problem is now: 

optimize	%(ô) = ô-Σô, constrainted	to	∂(ô) = ô-ô − 1 = 0 
 
Using the method of Lagrange multipliers and some matrix calculus, we find 

∑Y7ô-Σô − ∏(ô-ô − 1)8 = 2Σô − 2∏ô 
Setting this to 0 we obtain Σô = ∏ô, the standard eigenvalue setup 
 
Thus, the vector ô that maximizes variance is an eigenvector corresponding to the largest eigenvalue of the 
covariance matrix " 

• This vector is known as the first principal component 
 
Note that because Σ is an ! ×! real positive symmetric matrix, it has a set of ! eigenvalues (assuming 2 >
!) with orthogonal eigenvectors 

• Thus the remaining principal component vectors are the eigenvectors corresponding to the eigenvalues 
of Σ in decreasing order 

 
For each weight vector, ô, we call Var("ô) the explained variance due to the principal component ô 

• We can think of this as the amount of variance in " explained by the principal component ô 
• This can be accessed in sklearn with explained_variance_ 

 
It can be useful to think of this in terms of the portion of Var("ô) explained by the principal direction, ô 

• As we will see shortly, this can be helpful in determining how many components we should project 
down to 

• This value can be accessed in sklearn with explained_variance_ratio 
 
Although we didn’t do so in this example, we typically need to scale our data prior to fitting a PCA model 

• This is because the variance of a large scale feature is inherently larger than the variance of a small scale 
feature 

• So if we have data with vastly differing scales, we will not be recovering the “hidden structure” of the 
data, but rather showing what columns have the largest scale 

• A common scaling approach in practice is to run the data through StandardScaler first 
 
Sample Code: 

#	PCA	is	stored	in	decomposition	
from	sklearn.decomposition	import	PCA	
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#	make	the	PCA	object,	projecting	down	to	2-D	
pca	=	PCA(2)	
#	fit	the	data	
pca.fit(X)	

	

#	transform	gets	you	the	PCA	transformed	values	for	your	data	(in	this	case	x1/x2	-->	w1/w2)	
fit	=	pca.transform(X)	
	

#	demonstrate	.components	utility	
pca.components_	

	

#	use	it	to	get	PCA	component	vectors	w1	and	w2	(these	are	vectors,	so	each	will	be	itself	a	list)	
w1	=	pca.components_[0]	
w2	=	pca.components_[1]	
	

#	demonstrate	explained_variance_	
pca.explained_variance_	

#	demonstrate	explained_variance_ratio_	
pca.explained_variance_ratio_	

	

#	get	the	explained	variance	for	the	two	PCA	components	(these	are	just	scalar	numbers)	
expvar_w1	=	pca.explained_variance_[0]	
expvar_w2	=	pca.explained_variance_[1]	

 
Notes on the above code: 

• Here we have gone from 2D data to a 2D PCA, but in typical applications you’ll more likely be using 
PCA to reduce the dimensions 

o For example, looking only at ô" in this illustrative exercises 
• Note that the components_, explained_variance_, and explained_variance_ratio_ attributes return arrays 

of values associated with however many components you’ve built your PCA object with (in this case 2) 
o These arrays start with the first principal component in the 0th index 
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32. Principal Components Analysis II 
Lecture Notebooks/Unsupervised Learning/Dimensionality Reduction/2. Principal Components 

Analysis II.ipynb 
 
While PCA can be quite useful, you tend to lose some of the interpretability of the data set’s original features 

• In most applications, principle component 1 is usually more difficult to understand than something like 
dollars, units sold, points scored, etc. 

• Luckily, we can use the component vectors, the ôs, to help us understand what each principal 
component direction is capturing 

 
To help explain how to do this in practice, we’ll use a new data set stored in nba_team_shots.csv that tracks the 
shot distribution for NBA teams in the 2000-01 and the 2018-19 seasons 

• Note that this data set tags shot location using the 15 unique court zones illustrated and labeled below 
• In this example we’ll project this 15-dimensional data set down into 2D using PCA 

   
 
We can apply PCA to the data set easily enough to obtain the plot on the right, but what does it mean? 

• Let’s use the component vectors to find out! 
• See associated notebook for the heat map code used to obtain the colors below 

     PCA Component 1     PCA Component 2 

 
 
We see that the first PCA component has significant positive weights for zones 12, 13, 14, 10, and 11, while it 
has significant negative weights for zones 6, 5, 7, and 8 

• So teams with values > 0 in this PCA direction are making more 3-point shots than mid-range shots 



 63 

 
For the second PCA component, on the other hand, we find significant positive weights for zones 2, 4, and, 3, 
and significant negative weights for zones 8, 7, and 9 

• So teams with values > 0 in this second PCA direction are making more shots in the paint than center-
court mid-range shots 

 
Sample Code: 

#	import	the	data	
shots	=	pd.read_csv(“../../../Data/nba_team_shots.csv”)	
	

#	import	PCA	and	scaler	functions	
from	sklearn.decomposition	import	PCA	
from	sklearn.preprocessing	import	StandardScaler	
	

#	make	associated	objects	
scaler	=	StandardScaler()	
pca	=	PCA(n_components=2)	
	

#	fit	the	pca	and	get	the	transformed	data	
X_scaled	=	scaler.fit_transform(shots[shots.columns[3:]])	
pca.fit(X_scaled)	

fit	=	pca.transform(X_scaled)	
	

#	make	a	data	frame	for	the	component	vectors	so	we	can	analyze	them	
component_vectors	=	pd.DataFrame(	pca.components_.transpose(),	
																																				columns	=	[‘component_1’,	‘component_2’],	index	=	shots.columns[3:]	)	
	

#	look	at	features	and	how	they	are	weighted,	sorted	by	their	impact	on	the	first	PCA	direction	
component_vectors.sort_values(‘component_1’)	

 
Notes on the above code: 

• We use shots.columns[3:] because we only care about the shot percentages in each zone, and the first 
three entries are instead related to team and season identification 

• We need to include transpose() when making our illustrative dataframe because pca.components_ by 
default gives us our vectors as rows and we need them as columns here 
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33. Principal Components Analysis III 
Lecture Notebooks/Unsupervised Learning/Dimensionality Reduction/3. Principal Components 

Analysis III.ipynb 
 
A key question with PCA is how many components you should use, and as is so often the case in data science, 
the answer is dependent upon your use case 

• If you are interested in using PCA to produce a visualization of data, you likely want 2 or 3 components 
• On the other hand, if you’re using PCA to battle collinearity for a regression you'll want to use as many 

components as you have columns 
 
When the answer is not obvious from your use case, you can turn to the explained variance ratio 
 
We’ll explore this concept using the “labeled faces in the wild” data set 

• Each observation in this data set represents a publicly sourced 87 by 65 grayscale image of a relatively 
well-known public figure 

o This translates to 87 × 65 = 5,655 features for each observation 
• This number of features could be computationally expensive for some of the supervised learning 

algorithms we have learned up to this point, for example k-nearest neighbors 
o So let’s look at using PCA to reduce the number of dimensions 

 
We previously described the explained variance ratio as giving the portion of the original variance of " 
explained by each principal component direction 

• We often look at the explained variance curve, which plots the cumulative explained variance ratio 
against the number of directions you have considered 

 
 
What we typically do is look for the elbow in the explained variance curve 

• The elbow is where the amount of added variance ratio starts to rapidly decrease 
o In this example (shown above) it appears that the elbow occurs around 100 components 

• We take this as an indication that adding additional components will start to have diminishing returns 
 
Alternatively, we can simply set a cumulative explained variance ratio that we want to achieve and let sklearn 
find the number of PCA components necessary to attain it 

• We do this by simply setting n_components to be our desired cumulative explained variance ratio 
 
In general, we can think of PCA as a way to compress the data contained in ", and we can use a little linear 
algebra to help us see how well the compressed data compares to the original 
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Suppose that we are in ℝ$ and that vector Ω and vector æ are perpendicular, then for any vector + we can write 
+ = proj3(+) + projZ(+) 

 
Suppose that we have an observation "∗, then for any principal component vector ô: we have that 

projY'("∗) = ("∗ ⋅ ô:)ô: ≡ "¿:∗ô: 
 
If we define "¿:∗ to be the àth principal value for observation *, and if we take ¡ to be the total number of 
principal components, then we can approximate the original "∗ as 

"∗ ≈ "¿"∗ô" + "¿$∗ô$ +⋯+ "¿[∗ô[ 
 
When we apply this to our faces data set, examining how well images are reconstructed using PCA models of 
varying size, we see how an extra bit of explained variance can make a big difference 
 

 
 
Sample Code: 

#	get	and	load	the	labeled	faces	data	
from	sklearn.datasets	import	fetch_lfw_people	
people	=	fetch_lfw_people(min_faces_per_person=20,	resize=0.7)	
image_shape	=	people.images[0].shape	
#	import	PCA	
from	sklearn.decomposition	import	PCA	
	

#	need	to	scale	the	facial	imagery	data	
X	=	people['data']	
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#	this	scales	it	so	that	that	the	max	value	in	a	pixel	is	1	
X	=	X/255	
	

#	make	and	fit	the	PCA	model	
pca	=	PCA()	
pca.fit(X)	

	

#	get	the	explained	variance	ratio	
pca.explained_variance_ratio_	

	

#	make	another	PCA	model,	this	time	focused	on	attaining	a	95%	cumulative	explained	variance	ratio	
pca	=	PCA(n_components=.95)	
pca.fit(X)	

	

#	fit	a	PCA	with	3000	components	to	demonstrate	image	reconstruction	
pca	=	PCA(n_components=3000)	
pca.fit(X)	

	

#	get	the	projection	onto	the	lower	dimensional	PCA	space	
X_tilde	=	pca.transform(X)	
	

#	get	the	reconstruction	for	the	0th	index	image	
X_tilde[0,:3000].dot(pca.components_).reshape(image_shape)	

 
Notes on the above code: 

• By leaving the PCA() call blank when we make the model (instead of specifying the number of 
components), it will fit the maximum number of possible components  

• If instead we give PCA() a fraction, it will fit the number of components needed to attain a cumulative 
explained variance ratio equal to that fraction 

• It is standard practice when working with image data to scale pixel values such that they can vary from 0 
to 1, as we have done here 
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34. Linear Support Vector Machines 
Lecture Notebooks/Supervised Learning/Classification/11. Linear Support Vector 

Machines.ipynb 
 
Linear support vector machines are a particular branch of support vector machines that are used to separate data 
that you suspect have linear, or nearly linear, decision boundaries 
 
We will start with what are sometimes referred to as maximal margin classifiers, looking first at an example 

 
Here you can clearly separate the two classes with a simple straight line, and more generally with what’s known 
as a hyperplane 

• Note that for any high dimensional space, a subspace that is one dimension lower is a hyperplane 
• So in 1-D (ℝ") a hyperplane is simply a point, in 2-D (ℝ$) a hyperplane is a line, in 3-D (ℝ4) a 

hyperplane is a 2-D plane, and in ℝ%, it is an 2 − 1 subspace 
 
We can draw here a number of lines that cleanly separate the data sets (see middle plot above), but we want to 
identify the boundary that will best generalize to future data sets 

• Since the red and blue lines are very near the training data at points, it is likely that new observations 
would deviate to the wrong side of the decision boundary due to random noise 

 
One approach is to draw a hyperplane that maximizes the total distance from all points to the hyperplane 

• Essentially we want to draw a hyperplane, find the minimum distance from the points to the hyperplane 
(known as the margin), then make that as large as possible (maximize it) 

• Hence the name maximal margin classifier 
 
Given a binary variable, # ∈ {−1,1}, and a set of ! features stored in the columns of a feature matrix ", we can 
find the maximal margin classifier, if it exists, by solving the constrained optimization problem 

find	-	and	maximal	., subject	to	‖-‖$$ = 1	and	#(#)7"(#)-8 ≥ .	∀¥ = 1,… , 2 
where - = (β!, -", … , -*)- is a coefficient vector and " has been extended to include a column of ones 

• It is possible to solve this optimization problem, but we won’t address the details of doing so here 
o If interested, this solution can be found in the Elements of Statistical Learning book 

 
Now, #(#)7"(#)-8 ≥ . may look weird, but "- = 0 is a formula that defines a hyperplane, for example: 

-! + -""" + -$"$ = 0 is the formula for a line in 2-D, and 
-! + -""" + -$"$ + -4"4 = 0 is the formula for a plane in 3-D 

So #(#)7"(#)-8 ≥ . just establishes that we want all of our points to fall outside a margin . on either side of 
the hyperplane "#- = 0 
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The above right example plot shows a practical solution, with the decision boundary “hyperplane” shown by the 
solid black line, and the dotted lines making a distance . away from it 

• You might notice that some of the points touch the margin lines 
• Such observations are known as the support vectors because they “support” the separating line, in the 

sense that if we move these points slightly, the line will move as well 
 
Okay so we now have an algorithm that can separate groups that are separable by hyperplanes, but there are two 
looming possible issues: 

• There’s no guarantee our data will be cleanly separable by a hyperplane 
• The maximum margin classifier may be too sensitive to training data 

 
For example, what if our data set from above had a few outliers in each class? 

   
 
While this new version of the data isn’t linearly separable, it is almost linearly separable, and if we’re willing to 
accept this imperfect separation we can still use the maximal margin classifier as our guide for a new algorithm 
called the soft margin or support vector classifier 
 
The maximal margin classifier is a hard margin classifier, meaning that instances of class 0 are not allowed to 
cross the decision boundary over into the area occupied by class 1, but we can relax this rule, modifying the 
associated constrained optimization problem so that we aim to 

find	-	and	maximal	., subject	to	‖-‖$$ = 1	and	#(#)7"(#)-8 ≥ .	∀¥ = 1,… , 2 

)(#) ≥ 0,3)(#)
%

#&"

≤ 1
§ 

 
As before, we’ll leave the details of solving this problem in the Elements of Statistical Learning book 
 
Here )(#) are referred to as slack variables because they control how much observation ¥ can violate the margin 

• If )(#) = 0, then observation ¥ is on the correct side of the margin 
• If 0 < )(#) < 1, then observation ¥ is on the wrong side of the margin, but correct side of the hyperplane 
• If )(#) > 1, then observation ¥ is on the incorrect side of the hyperplane 

 
Meanwhile, § is a hyperparameter that you tune, typically using cross-validation 

• The value of  § we choose can be thought of as our “budget” for the slack variables )(#) 
• Larger values of § lead to a smaller budget, so we approach the maximum margin classifier discussed 

earlier, while smaller values of § produce softer margins 
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• As demonstrated above, changing the value of § can have a significant impact on the location of your 
decision boundary 

o Note the differences between the § = 10 and § = 0.01 boundaries 
 
For the support vector classifier, we consider any point that touches or is on the wrong side of the margin (that 
is, those for which )(#) > 0) a support vector 

• As before, these are called support vectors because they “support” the decision boundary in a sense 
• Slight changes to these points will shift the decision boundary, while slight changes to non-support 

vector points will not 
o However, large changes to previously non-support vector points may move them into the regime 

where they become support vectors themselves 
 
We code up both the maximal margin classifier and the support vector classifier using sklearn’s LinearSVC  
 
We have presented support vector machines as a binary classification algorithm here, but in practice they can 
also be used for multiclass classification 

• This is true for both the linear support vector machines covered in this lesson and the general support 
vector machines we’ll cover next lesson 

• sklearn approaches multiclass support vector machines with a one vs one approach in which you train a 
unique support vector machine classifier for each possible pair of classes 

• If you had three classes 1,2,3, for example, you would train a 1 or 2 classifier, a 1 or 3 classifier, and a 2 
or 3 classifier 

• For a problem with § classes you will in general train §(§ − 1) 2⁄  different support vector machines 
 
Sample Code: 

#	import	LinearSVC	
from	sklearn.svm	import	LinearSVC	
	

#	make	model,	first	for	the	maximal	margin	classifier	with	its	large	C	
max_margin	=	LinearSVC(C	=	1000,	max_iter	=	100000)	
#	fit	model	
max_margin.fit(X,	y)	

	

#	make	model,	this	time	demonstrating	a	more	relaxed	support	vector	classifier	with	a	moderate	C	
svc	=	LinearSVC(C	=	10,	max_iter	=	100000)	
#	fit	model	
svc.fit(X,	y)	

 
Notes on the above code: 

• Note that we code up the maximal margin classifier as a special case of the support vector classifier’s 
LinearSVC tool by using a large § value 

• Since LinearSVC does not have a predict_proba method, if you needed prediction probabilities (for 
example if you wanted to look at an ROC curve), you’d need to use the SVC package (introduced in the 
next lesson) with the arguments kernel='linear' and probability=True 
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35. General Support Vector Machines 
Lecture Notebooks/Supervised Learning/Classification/12. General Support Vector 

Machines.ipynb 
 
Note that, while we have examined SVMs in the context of classification, they can also be used for regression 
 
We previously discussed linear support vector machines which look to find a hyperplane that separates your 
dataspace into two halves, but what if you’re working with data that can’t be separated by a hyperplane? 

  
 
The 1-D data set shown above, for example, cannot be separated by any single point (the hyperplane for a 1D 
space), but we can find a linear separation if we “lift” it into a 2-D space using the transformation +$ = +"$ 

• We can then convert the intercepts from this 2D decision boundary line into 1D decision boundaries 
 
This trick is the essence of the more general support vector machine – we take data in a lower dimension and 
somehow embed it into a higher dimension, one where it is hopefully close to linearly separable 

• One clear potential issue is how to choose an appropriate embedding, as we could easily end up with an 
enormous magnitude of potential features, which would lead to impractical computational costs 

• Fortunately, support vector machines have a nice way of handling this problem 
 
While we have not discussed how the solution to the support vector classifier is computed, because it is a bit 
long and technical, it turns out that it solely involves the inner products between the training observations 

• Note that the inner product between two vectors ç, é ∈ ℝ* is computed as 〈ç, é〉 = ∑ ç#é#*
#&"  

o For our purposes we can think of the inner product as a dot product, so 〈ç, é〉 = ç ⋅ é 
 
If we have some function … that takes our observations into a higher dimensional space in order to separate 
them, then we’ll need to compute 〈…("∗), …("#)〉 for pairs of observations "∗ and "# 

• … can ultimately take our lower dimensional data into very high (practically infinite) dimensional space, 
which would make it nearly (or actually) impossible to compute the inner products necessary to estimate 
the separating boundary 

• But what if we didn’t need to actually compute 〈…("∗), …("#)〉 in the higher dimensional space? 
 
For example, let’s say our data has two features +" and +$ and our … is such that 

…¢4+"+$6£ =  
+"$

√2+"+$
+$$

À 

For two vectors ç and é, the inner product between …(ç) and …(é) is 
〈…(ç), …(é)〉 = ç"$é"$ + 2ç"é"ç$é$ + ç$$é$$ = (ç"é" + ç$é$)$ = 〈ç, é〉$ 
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So even though we knew what the map … was to the higher space here, we didn’t actually need to know …(ç) 
or …(é) in order to compute the dot product 〈…(ç), …(é)〉 
 
In this context we say a map … has a kernel function Ã if 〈…(ç), …(é)〉 = Ã(ç, é), where Ã is only a function 
of ç and é in the original feature space 

• So for the example above the kernel function is Ã(ç, é) = (〈ç, é〉)$ 
 
Common kernel functions for support vector machines are: 

• Linear: Ã(ç, é) = 〈ç, é〉$ 
o This gives the linear classifiers we looked at earlier 

• Polynomial: Ã(ç, é) = (ê〈ç, é〉 + Õ)< 
o Our example … above is an example of this, and one was used for our earlier 1-D data example 

• Gaussian Radial Kernel (Gaussian RBF): Ã(ç, é) = exp(−ê‖ç − é‖$), where ‖∘‖ is the Euclidean 
norm 

• Sigmoid: Ã(ç, é) = tanh(ê〈ç, é〉 + Õ) 
• In these functions ê, Õ, and • are hyperparameter to be tuned using something like cross-validation 

o These are in addition to the margin hyperparameter §, which is still pertinent here 
 
We implement support vector machines in sklearn using SVC, and when doing so we can specify different 
kernels and compare their resulting decision boundaries 

 
Sample Code: 

#	import	SVC	
from	sklearn.svm	import	SVC	
	

#	make	two	svc	models	to	compare	between	kernels	
svc_poly	=	SVC(C=10,	kernel=‘poly’,	degree=2)	
svc_rbf	=	SVC(C=10,	kernel=‘rbf’)	
#	fit	the	models	
svc_poly.fit(X,	y)	

svc_rbf.fit(X,y)	
 
Notes on the above code: 

• An svc model with the kernel=‘poly’ option can also be used to recover the same classifier we looked at 
in the 1-D example earlier in the lesson, although you need to use reshape(-1,1) again in that context 

• If you have an application where linear SVC is likely to be appropriate, though, you should use the 
LinearSVC package since it will be more efficient than the more general SVC package introduced here 
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36. Decision Trees 
Lecture Notebooks/Supervised Learning/Classification/13. Decision Trees.ipynb 

 
If you have the data set plotted below, one choice for a classifier would be to say that for points left of the +" =
1 line, the class is # = 0, while for points right of the + = 1 line, it is # = 1 

  
 
While this is an extremely simple example, it shows the basic idea behind decision trees 

• You look at a feature, make a cut point that minimizes some measure of wrongness, and keep going until 
you reach some stopping criterion 

 
In sklearn we fit decision trees using the model object DecisionTreeClassifier, and we can also use tools from 
the tree package to visualize the resulting fit algorithm 

• The plot shown on the right is the logic tree built by the decision tree algorithm 
• To classify a new observation we start at the root node up top 
• If the observation satisfies the logic statement at the top we go left and are classified as a 0, otherwise 

we go right and are classified as 1 
• The two children of the root node are known as leaf nodes or terminal nodes because they have no 

children of their own 
o At this stage we take the majority class contained in that node to be the classifier’s prediction for 

future samples 
• Ultimately, this recovers the same rule we had identified by eye, as it should for this simple example 

 
Each node in the decision tree plot includes a number of different statistics: 

• gini – The Gini impurity of the node (explained below) 
• samples – The number of samples in each node 
• value – The breakdown of the number of samples of each target value in the node 

o For example, the leaf node on the left has 100 nodes labeled 0, and 0 nodes labeled 1 
• A decision rule – The logic rule that is used for the following split 

o Samples that satisfy the rule go to the left child, while samples that are evaluated as False go to 
the right child 

o Leaf/terminal nodes do not have a decision rule, since they are the end of the tree 
 
There are a number of ways one might measure the impurity of a decision tree, but we’ll focus on Gini impurity 
and entropy here since they are easily implemented using sklearn 

• They are specified in practice by setting criterion to either “gini” or ‘entropy” 
 
Assuming you have ≤ target classes, the Gini impurity for class ¥ of a node estimates the probability that a 
randomly chosen sample of class ¥ from the node is incorrectly classified as not class ¥ 



 73 

The formula is G# = í#(1 − í#), where í# is the proportion of samples in the node of class ¥, and the total Gini 
impurity is the sum G# 

N] =3G#
^

#."

= 1 −3í#$
^

#&"

 

 
The contribution made to entropy from class ¥, again assuming there are ≤ target classes, is œ# = −í# log(í#), 
where again í# is the proportion of samples in the node of class ¥, and the total entropy of the node is the sum of 
all the œ# 

N_ =3œ#
^

#."

= −3í# log(í#)
^

#&"

 

 
In most cases both measures are comparable, and since Gini impurity is faster to compute (the logarithm in 
entropy making it a bit more computationally taxing), it is a good default (and the default used by sklearn) 

• It has been found that entropy leads to more balanced trees, though 
 
When fitting a decision tree, sklearn uses the Classification and Regression Tree (or CART) algorithm 

• Suppose your data set has n observations with m features, and for simplicity only 2 target classes 
 
The algorithm starts with the root node, and then searches through each feature, I, until it finds a split point, ó), 
that produces the purest subsets (weighted by the number of samples in each subset) 

• I.e., it finds a split point ó) that minimizes 

–(I, ó)) =
2:;`1
2 N:;`1 +

2a#Jb1
2 Na#Jb1 

• Once it finds the (I, ó)) pair with the smallest –(I, ó)), it splits the data according to that decision split 
 
The algorithm then repeats the entire process on each of the children nodes it just produced, and this continues 
until either it can no longer reduce the impurity by making a cut, or it reaches a stopping condition like: 

• Reaching a maximum depth, controlled with max_depth 
• Reaching a minimum number of samples in each node, controlled with min_samples_leaf 
• Reaching a minimum weight to be in a node, controlled with min_weight_fraction_leaf 
• Other possible stop conditions can be found in the DecisionTreeClassifier documentation 

 
Here’s at an example of how max_depth can impact a decision tree classifier: 
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Typically we’d choose our max_depth (or any other stop condition) using something like cross-validation 
 
Decision Tree Advantages: 

• Interpretability 
o As opposed to the “black box” moniker often used to describe machine learning, decision trees 

are known as a “white box” algorithm because you are able to entirely describe how they predict 
a data point using the logic tree 

• Efficient 
o Fits are quick, and you require very little preprocessing of data prior to training 

§ No need to scale data like we’ve needed to do for other algorithms 
 
Decision Tree Disadvantages: 

• Greediness 
o The algorithm is greedy meaning it may not create the optimal tree 
o If, for example, the best tree involves an initial suboptimal cut, the CART algorithm won't find it 

• Overfitting 
o Decision trees are prone to overfitting the data, although you can control for this using 

regularization hyperparameters like max_depth and min_samples_split and cross-validation 
• Orthogonal Boundaries 

o Because of the process of determining cut points, decision boundaries occur at right angles 
o This means that the decision tree will have difficulty capturing the boundary of classes divided 

by non-horizontal or non-vertical lines 
o This can be mitigated a bit with PCA 

• Sensitivity 
o Trees are very sensitive to the training data, so that removing or adding a few points can greatly 

change the decision boundary produced by the algorithm 
o One way around this is to use an averaged algorithm, like a random forest that we’ll discuss next 

 
Sample Code: 

#	this	will	be	used	to	plot	the	decision	tree	
from	sklearn	import	tree	
#	import	the	actual	classifier	
from	sklearn.tree	import	DecisionTreeClassifier	
	

#	make	a	decision	tree	object	
tree_clf	=	DecisionTreeClassifier(criterion=‘gini’)	
#	fit	and	then	plot	the	decision	tree	
fig	=	tree_clf.fit(X,	y)	
tree.plot_tree(fig,	filled	=	True)	
plt.show()	

	

#	sample	call	using	a	max_depth	stop	condition	
tree	=	DecisionTreeClassifier(max_depth	=	5)	

 
Nots on the above code: 

• If all you want is to fit a decision tree, you can skip the “from sklearn import tree” bit above, as it’s only 
needed for the plotting functionality here, and you don’t need the full module just to fit a tree 

• We haven’t used it here, but there is also a decision tree regressor (found in DecisionTreeRegressor)  
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37. Random Forests I 
Lecture Notebooks/Supervised Learning/Classification/14. Random Forests I.ipynb 

 
A random forest classifier is comprised of numerous decision trees 

• The idea behind the algorithm is our first example of ensemble learning 
• They are essentially a machine learning implementation of the wisdom of the crowd 

 
The idea with ensemble methods is to build a number of different algorithms and then average their predictions 
into a "wiser" prediction 

• In the case of random forests this means building many decision trees that are different (usually by some 
random perturbation) that are then used to produce a forest 

 
In sklearn we can make a random forest classifier with RandomForestClassifier 
 
Comparing a single decision tree with max_depth=2 to a random forest with the same max_depth=2 we can 
start to see the benefit of using an RFC over a single decision tree 

 
 

There are several ways sklearn can go about building the decision trees needed for a random forest 
• Something must be tweaked each time, otherwise you’d just repeatedly obtain the original decision tree 

 
Random sampling with replacement (bagging) 

• One way is to randomly sample training points with replacement from the data set, then train the 
algorithm on the randomly sampled set 

o So we build our set for training by repeatedly picking a point at random from our data set 
• This process is more generally known as bagging, and we'll see it again when we touch on more general 

ensemble learning in future lessons 
• Note that this is the default for sklearn's decision trees, and it can be controlled with the bootstrap option 

o Setting bootstrap=True uses bagging, while False trains each tree with the entire data set 
• If your training set has 2 points, the algorithm by default randomly samples 2 points with replacement 

then trains a decision tree on it 
o This can be changed to be less than the entire dataset using the max_samples option 

• The algorithm then trains n_estmiators different independent trees 
o The default value for n_estimators is 100, although this can easily be changed 

 
Random sampling without replacement (pasting) 
• An alternative to bagging is to randomly select data points without replacement from the training set 

o So if we randomly select a given point for inclusion in our test sample, it cannot be chosen again 
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§ As opposed to random sampling with replacement, where it could be chosen again 
o This is known as pasting 

• We won't spend time on this one here since the random forests in sklearn don't currently support this option, 
but we'll revisit it in the future 

 
Randomly selecting predictors 

• In addition to the ability to randomly sample data, every decision tree is built on a random sample of the 
features of the data 

• This means that, unlike in a single decision tree where the best cut is chosen from all of the features at 
each step, we limit ourselves to which features we consider 

• As with decision trees, you can control the maximum number of features considered in your model with 
the max_features option 

 
Note that all of these options (bootstrap, max_samples, n_estimators, max_features, etc.) are hyperparameters 

• Compared to the other algorithms we've examined thus, far random forests have the most 
hyperparameters to think about 

• Depending on the settings you choose for the algorithm, you could wind up with vastly different 
predictions, so it’s always important to think about why you choose a particular hyperparameter value 

 
As before, cross-validation is a good way to tune hyperparameters like max_depth: 

 
In this example we see that the best max_depth value for our RFC is about 6 

• Note that although individual decision trees with large maximum depths can attain slightly higher CV 
accuracies, we would likely want to stick with the RFC given their propensity for overfitting 

o The oscillatory signatures we see for the decision tree at larger maximum depths indeed seems to 
suggest some overfitting 

 
Extra-Trees 

• This algorithm is just like a random forest, but in addition to randomly selecting a handful of features to 
optimize, it also randomly selects the cut-points rather than having the tree search for the optimal one 

• This algorithm is faster random forests, but does tend to have a little more bias 
o Not necessarily a bad thing, since this naturally helps avoid overfitting 

• Typically you'd want to build both classifiers and compare metrics via cross-validation to decide if an 
extra-trees classifier is better than a standard random forest for your application 

• We can code this up in sklearn using ExtraTreesClassifier 
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An additional issue with tree-based algorithms in sklearn is that they don’t handle categorical variables well 

• Features are cast as floats in the fitting process, which works fine for continuous and binary predictors, 
but this is poorly suited to categorical variables 

• When you one-hot encode a variable with many categories you end up with many sparse columns 
o The resulting sparsity virtually ensures that continuous variables are assigned higher feature 

importance 
• A single level of a categorical variable must meet a very high bar in order to be selected for splitting 

early in the tree building 
o This can degrade predictive performance 

 
It’s not unreasonable to run into problems where this issue is pertinent, so what to do? 

• You could try addressing your problem in R, since its ‘rpart’ package is better suited to tackling 
categorical variables 

o That said, R’s ‘randomForest’ package may have limitations on the number of unique categories 
• Alternatively you could look into other python packages that address this shortcoming 

o One example is h2o 
 
Sample Code: 

#	import	the	random	forest	classifier	
from	sklearn.ensemble	import	RandomForestClassifier	
	

#	make	a	forest,	fit	the	forest	
forest	=	RandomForestClassifier(n_estimators=500,	max_depth=2,	random_state=614)	
forest.fit(X,y)	

	

#	predict	using	the	forest	
forest_preds	=	forest.predict(X_pred)	
	

#	import	ExtraTrees	
from	sklearn.ensemble	import	ExtraTreesClassifier	
	

#	make	and	fit	an	ExtraTrees	classifier	with	max	depth	of	2	
extra	=	ExtraTreesClassifier(n_estimators	=	500,	max_depth	=	2,	random_state	=	2311,	max_samples	=	100)	
extra.fit(X,y)	
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#	get	associated	predictions	
extra_preds		=	extra.predict(X_pred)	

 
Notes on the above code: 

• Because of the random elements in these two classifiers, it is again a good idea to include random_state 
values when you build them to aid in reproducibility 

• All of the options we used for individual decision trees like min_samples_split can be used here as well 
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38. Random Forests II 
Lecture Notebooks/Supervised Learning/Classification/15. Random Forests II.ipynb 

 
An additional benefit of the random forest algorithm is its ability to identify which features are important for 
classification 
 
The sklearn algorithm measures feature importance in the following way: 

1. For each feature it looks at every tree and identifies the nodes that use said feature to make a cut 
2. It measures how much those cuts reduced impurity and averages that value over all the trees in the forest 
3. After getting the average impurity reduction for each feature, sklearn scales the results so that the sum of 

all feature importances is equal to 1 
 
As a practical example, let’s again look at the iris data 

   
We begin by doing cross-validation to identify an optimal value for the maximum depth hyperparameter 

• In this case, max_depth=4 looks like the best choice 
 
We can then use the feature_importances_ attribute to identify which features are most important 

• Here petal length/width are both quite significant, while sepal length/width are relatively unimportant 
 
Sample Code: 

#	import	the	RFC	package	
from	sklearn.ensemble	import	RandomForestClassifier	
#	make	and	fit	a	random	forest	
forest	=	RandomForestClassifier(n_estimators=500,	max_depth=4)	
forest.fit(X_train,	y_train)	

	

#	demonstrate	feature	importances	
forest.feature_importances_	

	

#	make	it	a	more	readable	dataframe	
score_df	=	pd.DataFrame({‘feature’:X_train.columns,	‘importance_score’:	forest.feature_importances_})	
score_df.sort_values(‘importance_score’,ascending=False)	

 
Notes on the above code: 

• In this example we had previously done cross-validation to identify an optimal value for max_depth of 4 
• The same feature_importances functionality can be applied to extra-trees classifiers made from sklearn’s 

ExtraTreesClassifiers package 
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39. Ensemble Learning I – Voter Models 
Lecture Notebooks/Supervised Learning/6. Voter Models.ipynb 

 
Ensemble models can be used for both regression and classification tasks 

• For example, while we introduced random forests as a classification method, they can easily be used for 
regression, all you need to do is create a forest of decision tree regressors 

• In this lesson we’ll focus on voter models for classification, but these too can work for regression 
 
Let's say that you have a few different classifiers that you think are pretty good, for instance a logistic 
regression model, a knn model, a support vector machine, and a random forest model 

• A voting classifier is one that looks at how each of your classifiers decides to classify a point and goes 
with the decision that receives the most “votes” 

 
We can implement voting models in sklearn using the VotingClassifier object 

• Let’s look at example voting classifiers built around a logistic regression classifier, a random forest 
classifier, a support vector machine classifier, and a k-nearest neighbors classifier 

Component models: 

 
Resultant voter models: 

     
 
Note that we coded up the above example first using hard voting (by including the argument voting=“hard”) 

• With this method, the prediction is decided according to the majority vote of the individual classifiers 
• For example, if 3 out of 4 possible classifiers classify the observation as a 1, then the voter model 

classifies it as a 1 
 
The other option (used for right plot) is to use soft voting (by including the argument voting=“soft”) 

• For this type of voting classifier predictions are chosen according to the probabilities assigned by each 
of the constituent classifiers 

• For each observation the soft voter assigns the class, u, for which ∑ î/(## = u|"#)c
/&"  is largest, where î/ 

denotes the probability according to voting classifier R of a possible classifiers 
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• This does a better job handling the notch of sparsely sampled data in the lower left of the above example 
 
Note that you can also perform weighted voting of the classifiers with the weights argument 

• This would assign some classifiers more pull in deciding the predicted class than others 
 
Voter models can also be made using an ensemble of independent regression models 

• The voter regression model takes the average (or weighted average) of all of the regression models fed 
into it to make a prediction 

• Implemented using sklearn’s VotingRegressor object 
• Note that this does not mean that you should build several linear regression models with slightly 

different features and feed them into a voter model 
o This applies to voter model classifiers as well! 

• Instead you should build a handful of unique regression models, for example using a linear regression 
model, a KNN regression model, a support vector regressor, and a random forest regressor 

o We introduced these methods primarily as classifiers, but they can all also be used for regression 
 
Sample Code: 

#	import	base	classifiers	
from	sklearn.linear_model	import	LogisticRegression	
from	sklearn.neighbors	import	KNeighborsClassifier	
from	sklearn.svm	import	SVC	
from	sklearn.ensemble	import	RandomForestClassifier	
	

#	now	import	the	voting	classifier	
from	sklearn.ensemble	import	VotingClassifier	
	

#	make	base	models	
log	=	LogisticRegression()	
knn	=	KNeighborsClassifier(5)	
svm	=	SVC(kernel=‘linear’,	C=1,	probability=True)	
rf	=	RandomForestClassifier(max_depth=5)	
	

#	make	the	voting	classifier	
voting	=	VotingClassifier(	[(‘log’,	LogisticRegression()),	
								(‘knn’,	KNeighborsClassifier(5)),	(‘svm’,	SVC(kernel=‘linear’,	C=1,	probability=True)),	
								(‘rf’,	RandomForestClassifier(max_depth=5))],	voting=‘hard’	)	
	

#	fit	them	all	with	a	for	loop	
for	name,clf	in	(	[“log_clf”,log],	[“rf_clf”,rf],		[“svm_clf”,svm],	[“knn_clf”,knn],	[“voting_clf”,voting]	):	
#	fit	the	specific	model	
	clf.fit(X,	y)	

				#	get	predictions	
				y_pred	=	clf.predict(X)	
 

Notes on the above code: 
• Note that the voting classifier syntax is similar to that we saw earlier for pipelines 
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40. Ensemble Learning II – Bagging and Pasting 
Lecture Notebooks/Supervised Learning/7. Bagging and Pasting.ipynb 

 
Bagging and pasting work by training the same kind of classifier on “different” data sets 

• Different data sets are obtained by randomly sampling our training data to simulate a new draw of 
training data 

• When that sampling is done with replacement, it is known as bagging 
o This is short for “bootstrap aggregating” and is sometimes referred to as bootstrap sampling 
o I.e., grab 1 M&M out of your hypothetical bag of them, record its color, and then put it back, 

repeating this process 10 times 
• When sampling is performed without replacement, it is called pasting 

o I.e., grab 10 M&Ms out of your bag at once to use as your simulated sample 
 
Using syntax similar to the VotingClassifier package, we can use sklearn’s BaggingClasifier package to build 
both pasting and bagging models 
 
Note that unlike in the voter model, where we wanted to use a number of fundamentally different classifiers, 
here we will be using an ensemble of similar classifiers trained on the slightly different sample data sets 
produced through either bagging or pasting 

• This is similar to the idea behind taking an ensemble of decision trees to build a random forest classifier 
 
As an example, we can build bagging and pasting models using an ensemble of KNN classifiers and compare 
against that of a standard individual KNN classifier 

 
 
Looking at the plots above, we see that for this data set the bagging classifier seems to do a bit better than the 
pasting classifier 

• They both are a rather significant improvement over the individual KNN classifier, which almost 
entirely misses blue classifications for +" < 0.2 

 
Note that when using these kind of models you’ll still want to optimize hyperparameters for the base model 
(like the number of nearest neighbors) using cross-validation as covered previously 

• Also good to compare between bagging and pasting, as these are hyperparameters for this model 
 
Just like with voting models, bagging and pasting can be implemented with regression models as well, where 
the prediction for a particular set of features "∗ is taken as the average of all the bagging base model predictions 

• In sklearn this is implemented with BaggingRegressor 
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Sample Code: 
#	import	model	objects	
from	sklearn.neighbors	import	KNeighborsClassifier	
from	sklearn.ensemble	import	BaggingClassifier	
	

#	make	bagging	and	pasting	classifiers	
bag	=	BaggingClassifier(base_estimator	=	KNeighborsClassifier(10),	
																											n_estimators	=	100,	
																											max_samples	=	100,	
																											bootstrap	=	True,	
																											random_state	=	7556)	
paste	=	BaggingClassifier(base_estimator	=	KNeighborsClassifier(10),	
																											n_estimators	=	100,	
																											max_samples	=	100,	
																											bootstrap	=	False,	
																											random_state	=	892)	
	

#	we'll	compare	it	to	a	single	knn	
knn	=	KNeighborsClassifier(10)	
	

#	fit	individual	knn	and	check	accuracy	
knn.fit(X,y)	

y_pred	=	knn.predict(X)	
knn_acc	=	sum(y	==	y_pred)/len(y_pred)	
	

#	fit	bagged	data	and	check	accuracy	
bag.fit(X,y)	

y_pred	=	bag.predict(X)	
bag_acc	=	sum(y	==	y_pred)/len(y_pred)	
	

#	fit	paste	data	and	check	accuracy	
paste.fit(X,y)	

y_pred	=	paste.predict(X)	
paste_acc	=	sum(y	==	y_pred)/len(y_pred)	

 
Notes on the above code: 

• In BaggingClassifier, if bootstrap=True we’re using bagging, while bootstrap=False uses pasting 
• As in most applications, random states aren’t strictly necessary to use, but are helpful for reproducibility 

 
  



 84 

41. Ensemble Learning III – AdaBoost 
Lecture Notebooks/Supervised Learning/8. AdaBoost.ipynb 

 
Boosting is a very powerful algorithm, utilized in a number of winning data science competition entries 

• The theory behind the algorithm is based on the concepts of weak learners and strong learners from the 
subfield in Statistical Learning on PAC learnability 

o Here PAC is short for “Probably Approximately Correct” 
 
A statistical learning algorithm is referred to as weak learner if it does slightly better than random guessing, 
while a strong learner can be made arbitrarily close to the true relationship 

• In practice, a common weak learner algorithm is a single-layered decision tree, or a “decision stump” 
 
Making a weak learner is much easier than producing a strong learner in general 

• However, it has been shown that if a problem is weak learnable (meaning that a weak learner exists) 
then it is strong learnable (meaning that a strong learner exists) 

o Granted, the fact that a strong learner exists does not mean it is easy to identify 
 
The idea for boosting is that we combine an ensemble of weak learners to produce a strong learner 

• Here we will focus specifically on the AdaBoost algorithm developed by Freund and Schapire (1997) 
• Like our other ensemble learners, boosting can be used for either regression or classification, but here 

we will focus on its application to classification problems 
 
AdaBoost, which is short for adaptive boosting, trains a series of weak learners, with each subsequent classifier 
paying more attention to the training instances that were misclassified by its predecessors 

• For a weak learner R, the weights on each training sample are determined by the performance of weak 
learner R − 1 

• After training ú total weak learners, a final prediction is made by performing a weighted vote among all 
ú weak voters 

o In classification problems, voting weight is determined by the learner’s accuracy 
 

Let #(#) denote the class of observation ¥, #K/(#) denote the prediction on observation ¥ of weak learner R, and ô(#) 
denote the current weight assigned to observation ¥ 
 
After the jth weak learner is trained, that learner’s weighted error rate is calculated as 

Õ/ =
∑ ô(#)1

dWe$
(#)fW(#)g

%
#&"

∑ ô(#)%
#&"

= 1 − weighted	accuracy 

So Õ/ is large when the jth weak learner performs poorly, and Õ/ is small when it performs well 
 

The next step is to compute the weight assigned to the weak learner itself, v/ = “ log ≠1 − Õ/ Õ/” Æ, where “ is the 

learning rate of the algorithm, a hyperparameter you must set prior to fitting 
• Note that v/ is small when Õ/ is large (the jth weak learner is good), and large when Õ/ is small (it’s bad) 

 
Finally, we update the training sample weights for weak learner R + 1, increasing the weight on incorrectly 
predicted samples: 

ô(#) ← ’
ô(#)																		if		#K/(#) = #(#)
ô(#) exp7ç/8 		if		#K/(#) ≠ #(#)
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That’s all a bit abstract, so let’s look at training an AdaBoost classifier on this toy data set: 

 
 
For the first weak learner, each observation is given a uniform weight ô("), … , ô(h) = 1 6⁄  and using those 
weights the first weak learner yields the following decision rule: 

 
 
AdaBoost now calculates in order Õ", v", and new weights ô (for simplicity here we’ll take “ = 1) 

Õ" =
0 + 0 + 1 6⁄ + 0 + 0 + 0

1 6⁄ + 1 6⁄ + 1 6⁄ + 1 6⁄ + 1 6⁄ + 1 6⁄ = 1
6 , v" = log ¢1 − 1 6⁄

1 6⁄ £ = log(5) 
 
Because they were correctly classified, ô# for most points remains 1 6⁄ , but since point 3 was misclassified 

ô(4) → 1
6exp(log(5)) =

5
6 , and								ô = (1 6⁄ , 1 6⁄ , 5 6⁄ , 1 6⁄ , 1 6⁄ , 1 6⁄ ) 

 
These new weights are then used when training the second weak learner which, due to the increased weight on 
observation 3 produces a new decision boundary: 

 
 
AdaBoost now again calculates Õ$, v$, and updates the weights 

Õ$ =
0 + 0 + 0 + 1 6⁄ + 0 + 0

1 6⁄ + 1 6⁄ + 5 6⁄ + 1 6⁄ + 1 6⁄ + 1 6⁄ = 1
10 , v$ = log ¢1 − 1 10⁄

1 10⁄ £ = log(9) 
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Here observation 4 is the only misclassification, so we update its previous weight of 1/6 to find 

ô(5) → 1
6exp(log(9)) =

3
2 , and								ô = (1 6⁄ , 1 6⁄ , 5 6⁄ , 3 2⁄ , 1 6⁄ , 1 6⁄ ) 

 
If we were to stop here, predictions would be made using a weighted vote where weak learner 1 has votes worth 
v" = log(5) and weak learner 2 has votes worth v$ = log(9) 

• The number of weak learners to use before stopping is a hyperparameter, one set by n_estimators 
 
We can implement this algorithm in sklearn using the AdaBoostClassifier package 
 
Looking at an example using decision stumps and varying the number of estimators (with “ = 1) we see: 

 
 
As we increase the number of weak learners, we tend to overfit the training data 

• This can be mitigated by not using too many estimators 
o Where, as always, the “correct” number of estimators depends on your application and can be 

chosen with something like cross-validation 
 
Sample Code: 

#	import	AdaBoost	
from	sklearn.ensemble	import	AdaBoostClassifier	
#	import	the	base	classifier	needed	for	decision	stumps	
from	sklearn.tree	import	DecisionTreeClassifier	
	

for	i	in	[1,3,5,9]:	
ada_clf	=	AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),	
																																				n_estimators=i,	algorithm	=	‘SAMME.R’,	
																																				random_state=123)	
				#	fit	the	classifier	
				ada_clf.fit(X,	y)		

				#	make	predictions	from	fit	classifier	
				preds	=	ada_clf.predict(X_pred)	

 
Notes on the above code: 

• The learning rate “ takes on a default value of 1.0 if not defined in the AdaBoost object 
• Setting max_depth=1 for the decision tree forces it to be a decision stump 
• When declaring the AdaBoost algorithm, using “SAMME.R” is important since it allows our classifier 

to give us probabilities 
o The other option, “SAMME”, does not return probabilities 
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42. Ensemble Learning IV – Gradient Boosting 
Lecture Notebooks/Supervised Learning/9. Gradient Boosting.ipynb 

 
Gradient boosting is another boosting technique in which we iteratively build an ensemble of weak learners 
with the hope of creating a strong learner 

• The approach is to directly train weak learner R + 1 to model weak learner R’s errors 
• We’ll focus on regression here, but as with most other algorithms we’ve looked at it can also be used for 

classification 
 
Recall that in regression we try to model a quantitative variable # using ! features contained in a matrix " 
 
Gradient boosting in the context of regression works like so: 
Step 1) 

• Train a weak learner regression algorithm (say, a decision stump regressor) to predict y 
o This is weak learner 1 

• Calculate the residuals Õ" = # − ℎ"("), where ℎ"(") = #K is the prediction of weak learner 1 
Step j) 

• Train a weak learner on the residuals from step R − 1 
o Let ℎ/(") = Õ̂/." denote the jth weak learner’s estimate of the residuals 

• Calculate the residuals for this weak learner, Õ/ = Õ/." − ℎ/(") 
• Repeat, stopping when R + 1 = – 

o – is a predetermined stopping point (and thus a hyperparameter for this algorithm) 
The prediction for # at step R is found as ℎ(") = ℎ"(") + ℎ$(") + ⋯+ ℎ/("), adding up the predictions from 
each of the weak learners fit so far 
 
In practice this looks something like so 

 
 
For regression, we implement gradient boosting in sklearn with the GradientBoostingRegressor object 

• This follows the same sequence as the above example, training a series of decision tree regressors (with 
default max_depth=3) 



 88 

o The number of trees trained is determined by n_estimators (with a default value of 100) 
 
The learning rate determines how much weight each weak learner receives in the final prediction and offers one 
way to control overfitting 

• Note, however, that is typically preferable to use a small learning rate and then train more trees instead 
of using a large learning rate 

• This is likely why sklearn’s default value for learning_rate is 0.1 
 
The impact of using a small or large learning rate 

 
 
A second way to control over/underfitting this algorithm is by controlling the number of weak learners you train 
 
One way to find this that may be preferable to cross-validation is to use a validation set 

• You track the validation set error as you train additional weak learners, and then you pick the number of 
weak learners that had the lowest validation set error 

o We can implement this in sklearn using the staged_predict method, which returns an iterator over 
the predictions made by the booster at each level (with one tree, with two trees, etc.) 

• In this example, 112 weak learners has the lowest validation error and indeed seems to be a good fit 

   
 
We can also implement what is known as early stopping, where we stop training additional layers when it 
appears that we have reached a minimum 

• To do so in sklearn, we use the warm_start argument 
o This forces sklearn to keep older layers when the fit method is called 
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• In practice, we could code up a loop that stops if, after attaining what seems to be a minimum validation 
error, the next 10 weak learners produced worse error metrics 

• This saves time compared to training many trees and then looking retrospectively to identify the best one 
• This approach it is somewhat susceptible to getting stuck in a local minimum of your loss function 

o You can help mitigate this by doing something like stochastic training (where you do a random 
jump in the number of additional layers) to allow the algorithm to escape from local minima 

o Although standard early stopping should be fine for gradient boosting and the MSE 
 
So why is it called “gradient” boosting, anyway? 
 
Denoting our prediction for # as #K = œ/(") = ∑ ℎ)(")/

)&"  for step R, then for step R + 1 we have 
# ≈ œ/U"(") = œ/(") + ℎ/U"(") → ℎ/U"(") ≈ # − œ/(") 

 
Recall that for regression problems we have typically tried to minimize the MSE of the estimate, which at the 
R + 1 step we can denote as: 

1
2 4# − œ/(")6

$
 

 
Taking the negative gradient of this with respect to the estimate œ/ gives 

2
2 4# − œ/(")6 ≈

2
2 ℎ/U"(") 

 
Thus we see that gradient boosting is roughly speaking a gradient descent algorithm 
 
Sample Code: 

#	first	import	GradientBoosting	
from	sklearn.ensemble	import	GradientBoostingRegressor	
#	also	import	mse	
from	sklearn.metrics	import	mean_squared_error	
	

#	make	the	model	object	
n_trees	=	200	
gb	=	GradientBoostingRegressor(max_depth=1,n_estimators=n_trees)	
#	fit	the	booster	
gb.fit(X.reshape(-1,1),	y)	
	

#	use	a	list	comprehension	and	staged_predict	to	get	validation	errors	for	1	to	200	n_estimators	
mses	=	[mean_squared_error(y_val,	pred)	for	pred	in	gb.staged_predict(X_val.reshape(-1,1))]	
	

#	now	make	a	model	using	the	lowest	validation	mse	
best_num	=	range(1,n_trees+1)[np.argmin(mses)]	
gb	=	GradientBoostingRegressor(max_depth=1,	n_estimators=best_num)	
gb.fit(X.reshape(-1,1),	y)	
 

Notes on the above code: 
• This shows a general validation set optimization approach for identifying the best number of estimators 

o If the explanation for early stopping above isn’t clear, see the associated notebook for a coded up 
example of utilizing that method 

•  As before, setting max_depth=1 tells the algorithm to use only decision stumps 
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43. Ensemble Learning V – XGBoost 
Lecture Notebooks/Supervised Learning/10. XGBoost.ipynb 

 
In the previous lesson we learned about gradient boosting was and how to implement it using sklearn's 
GradientBoostingRegressor model object 

• Recall that this technique is a boosting approach where we iteratively train weak learners by training on 
the previous learner’s residuals 

 
Beyond sklearn, another popular package for gradient boosting is XGBoost (which stands for eXtreme Gradient 
Boosting) 

• XGBoost's code for fitting gradient boosting models is much faster and tends to perform better than 
sklearn’s implementation 

o It even offers the capability for your model to be trained in parallel, which sklearn does not 
currently offer for gradient boosting 

• Gradient boosting regression is implemented using XGBRegressor, and classifying with XGBClassifier 
• Note that this package isn’t as ubiquitous as sklearn, so you may need to install it on your machine if 

you haven’t used it previously (and you can usually do so using pip/conda install) 
 
The XGBoost package offers a nice way to track validation set performance for optimization: 

    
 
Additionally, we can implement early stopping in XGBoost without having to write our own clunky loop: 
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Sample Code: 
#	import	XGBoost	package	
import	xgboost	
	

#	FIRST	DEMONSTRATE	VALIDATION	SET	OPTIMIZATION	WITH	XGBOOST	
#	make	a	regressor	object	to	
xgb_reg	=	xgboost.XGBRegressor(n_estimators=500,	max_depth=1,	learning_rate	=	0.1)	
#	fit	the	model,	including	an	eval_set	
xgb_reg.fit(X.reshape(-1,1),	y,	eval_set=[(X_val.reshape(-1,1),	y_val)])	
	

#	get	number	of	estimators	that	has	the	best	RMSE	in	the	total	validation	set	comparison	
best_num	=	np.argmin(xgb_reg.evals_result()[‘validation_0’][‘rmse’])	
#	use	this	to	build	the	optimal	regressor	
xgb_optimal	=	xgboost.XGBRegressor(n_estimators=best_num,	max_depth=1,	learning_rate	=	0.1)	
xgb_optimal.fit(X.reshape(-1,1),y)	
	

#	NOW	DEMONSTRATE	EARLY	STOP	OPTIMIZATION	WITH	XGBOOST	
#	start	with	the	same	regressor	object	as	before	
xgb_reg	=	xgboost.XGBRegressor(n_estimators	=	500,	max_depth	=	1,	learning_rate	=	0.1)	
#	now	use	early_stopping_rounds	
xgb_reg.fit(X.reshape(-1,1),	y,	eval_set=[(X_val.reshape(-1,1),	y_val)],	early_stopping_rounds=10)	
	

#	get	number	of	estimators	that	has	the	best	RMSE	in	the	early	stop	set	
best_num	=	np.argmin(xgb_reg.evals_result()[‘validation_0’][‘rmse’])	
#	use	this	to	build	the	optimal	regressor	
xgb_optimal	=	xgboost.XGBRegressor(n_estimators=best_num,	max_depth=1,	learning_rate	=	0.1)	
xgb_optimal.fit(X.reshape(-1,1),y)	

 
Notes on the above code: 

• In general XGBoost is designed to feel similar to sklearn packages, so we can conveniently retain most 
of the syntax we’ve been using in prior lessons 

• Setting eval_set lets us more conveniently store the validation set metrics for our series of regressors 
o We can then access these metrics with evals_result 

• Here we are fitting the same toy data used in the prior lesson, and since this data is 1-D we need to again 
use our old friend reshape(-1,1) 
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44. Ensemble Learning Summary 
Lecture Notebooks/Supervised Learning/11. Ensemble Learning Summary.ipynb 

 
In review, we have learned about the following ensemble learning methods: 

1. Voter Models 
2. Bagging/Pasting Models 

a. Random Forests 
3. Boosting Models 

a. AdaBoost 
b. Gradient Boosting 

i. XGBoost 
 
Training in Parallel 

• One nice perk of voting models and baggers/pasters is that their constituent models can be trained in 
parallel (at the same time) 

• In contrast, the AdaBoost and Gradient Boosting algorithms need to wait for the weak learner at step R to 
be trained prior to training the weak learner at step R + 1 

• This means that, in general, voting models and baggers/pasters may be faster than the two boosting 
algorithms that we have learned about (assuming the constituent models are relatively quick to train) 

 
Constituent Models 

• Building off of our last point, while you cannot parallelize the constituent models of the boosting 
algorithms, because they are weak learners they are quick and easy to train (recall our decision stumps) 

• By contrast, voting and bagging/pasting models will likely have more complex constituent models, 
which take longer to train 

 
Importance of Model Independence 

• Voting models work best when they consist of more or less independent techniques 
• If all of the models in your voting method tend to make the same mistakes, then the voting model is 

unlikely to significantly outperform its constituent models 
• This can limit their usage if, for example, you are unable to train a variety of different models that 

perform well 
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45. Perceptrons 
Lecture Notebooks/Supervised Learning/Neural Networks/1. Perceptrons.ipynb 

 
Neural networks are a technique that that loosely tries to mimic the network of neurons that make up brains 

• The idea being that we're trying to create learning algorithms that copy in some very loose sense how 
humans learn 

o Although in practice neural networks work quite differently from the human brain 
• Introduced by Rosenblatt in 1960, perceptrons are the fundamental building block of neural networks 

 
Note that, while we’re going to discuss this in the setting of a classification problem, neural nets can be applied 
to a variety of settings 
 
Suppose we have 2 observations of ! features stored in ! different 2 by 1 column vectors "", "$, … , "* with 
" = (""|"$| … |"*) and we want to predict some target # 

• Note that we could include a column of 1s, but we’ll leave it out of this formulation and come back to it 
 
Let r be some nonlinear function from ℝ → ℝ 

• In the language of neural networks we call r an activation function 
• For classification we take r = sgn, the sign function 

o This states simply that r(+) = 1 if + > 0, and r(+) = −1 if + < 0 
 
Perceptrons make an estimate of # like so 

#K = r(ô""" +ô$"$ +⋯+ô*"*) = r("ô), 
where, in a potential abuse of notation, we have taken r("ô) to mean r applied to each of the 2 entries of "ô, 
and ô = (ô", ô$, … , ô*)- 
 
Letting + = (+", +$, … , +*) denote a single observation, I can draw the architecture of the neural network as 

 
 
The column of nodes are the inputs into the perceptron, and the output node has both Σ and r because this is 
where our weighted sum (Σ) and nonlinear transformation (r) occur 

• Note that, while we did not include a bias term (adding a constant to "ô), this can be easily done and is 
just left out here for simplicity 

 
Initial weights are selected randomly, and from there you then use a single data point from the training set, "(#), 
and you calculate the error #(#) − #K(#) 
 
You then update ô to be ô3i<91; = ô83aa;%1 + v7#(#) − #K(#)8"(#), where v is the network’s learning rate 
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The perceptron will cycle through all of the training points and continue to adjust the weights until it converges 
to a final weight vector ô 

• Each cycle through the training set is called an epoch 
• Typically the training points are chosen at random without replacement 
• Note that this can be performed with small batches of training points, at which point the batches are 

chosen randomly without replacement 
• Note also that this algorithm can be rewritten to work in parallel 

 
Perceptrons can be implemented in sklearn using the Perceptron package 
 
Looking at a couple toy examples, we can quickly see the perceptron’s Achilles’ heel 

  
 
Clearly this method doesn’t work very well for the second example, and indeed, a single perceptron is not 
capable of separating data sets that are not linearly separable 

• This limitation greatly reduced interest in perceptrons back in the 1950s and 60s 
• If your data is linearly separable, however, there is a proof that guarantees the perceptron will converge, 

as well as an upper bound on the number of epochs it must endure to get there 
 
The linear limitation is a major hindrance, though, so we’ll move on to learning about more complicated neural 
network architecture in our next lessons 
 
Sample Code: 

#	import	the	model	
from	sklearn.linear_model	import	Perceptron		
	

#	make	and	fit	a	perceptron	object	
perc	=	Perceptron()	
perc.fit(X,	y)	

	

#	get	predictions	from	model	for	your	test	set	
preds	=	perc.predict(X_test)	

 
Notes on the above code: 

• Given the limitations of individual perceptrons, you probably won’t use this in practice since better 
alternatives exist for linearly separable classification problems 
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46. The MNIST Data Set 
Lecture Notebooks/Supervised Learning/Neural Networks/2. The MNIST Data Set.ipynb 

 
Let’s take a look at the MNIST data set, since we’ll be using it extensively in coming lessons 

• We won’t look at it during these lessons, but keras also includes a similar data set called the “MNIST of 
Fashion” that has pre-labeled images of 70,000 clothing items 

o This might be fun to explore if you’re interested in more practice with neural networks 
 
The MNIST (Modified National Institute of Standards and Technology) data set is a collection of pixelated 
images of handwritten digits (the counting numbers from 0-9) 

• Each image is broken into a grid of pixels of grayscale values which measure the intensity of the 
handwriting within that pixel 

• Each pixel’s value ranges from 0 (no marking) to 255 (darkest marking) 
• The original data set contained 60,000 training images and 10,000 test images 

 
The sklearn version of this data set is a small sample of the original data with lower resolution images 

• It can be loaded with the load_digits function from the datasets module 
• This version of the data contains 1,797 different 8x8 images 
• Not a high quality version of the data, but it works well enough for demonstrating and testing machine 

learning algorithms 

 
 
The other version of this data set that we will use can be found in the keras package 

• In keras the MNIST data can be loaded with mnist in the datasets module 
o This is the full version of the data set, with 60,000 training observations and 10,000 test 

observations of 28x28 pixel images 
• keras is a python package built for making neural network models that we will learn more about in a 

future lesson 
o Note that keras is not as ubiquitous as sklearn, so you may need to install it on your machine if 

you haven’t used it previously 

 
 
For simplicity and east of use, when we are building models in sklearn we will use the sklearn version of the 
data, and when building them in keras we will use the keras version 
 
Sample Code: 
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#	import	and	load	the	compressed	data	set	from	sklearn	
from	sklearn.datasets	import	load_digits	
X,y	=	load_digits(return_X_y=True)	
	

#plot	some	example	images	from	the	sklearn	version	of	the	MNIST	data	(in	this	case	digits	0-4)	
fig,ax	=	plt.subplots(1,5,figsize=(15,5))	
for	i	in	range(5):	
				ax[i].imshow(X[i,:].reshape(8,	8),	cmap=‘gray_r’)	
				ax[i].text(.1,.1,str(y[i]),fontsize=16)	
				ax[i].set_xticks([])	

				ax[i].set_yticks([])	

plt.tight_layout()	

plt.show()	

	

#	import	the	original	data	set	version	stored	in	keras	
from	keras.datasets	import	mnist	
#	now	load	the	data	
(X_train,	y_train),(X_test,	y_test)	=	mnist.load_data()	
	

#plot	some	example	images	from	the	keras	version	of	the	MNIST	data	
fig,ax	=	plt.subplots(1,5,figsize=(15,8))	
inds	=	[0,13,15,17,4]	#manually	chosen	to	get	images	of	5,	6,	7,	8,	and	9	
for	i	in	range(5):	
				ax[i].imshow(X_train[inds[i],:,:],	cmap=‘gray_r’)	
				ax[i].text(2,2,str(y_train[inds[i]]),fontsize=16)	
				ax[i].set_xticks([])	

				ax[i].set_yticks([])	

plt.tight_layout()	

plt.show()	
 
Notes on the above code: 

• The keras version of the data set doesn’t have the images in nifty numeric order like the sklearn data set, 
so we had to include the inds list to manually identify images associated with the sequential digits 

• Note that when we load the keras version the full 60,000 training images and 10,000 test images of the 
data set are conveniently already labeled 
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47. Multilayer Neural Networks 
Lecture Notebooks/Supervised Learning/Neural Networks/3. Multilayer Neural Networks.ipynb 
 
While the limitations of perceptrons to linear decision boundaries stymied neural network development for 
several decades, this was eventually overcome through the development of multilayer neural networks 
 
The class of multilayer networks we examine in this lesson are known as feed forward networks, so-called 
because each layer feeds directly into the next one 
 
Here’s an example architecture diagram for such a neural network: 

 
 
This example diagram depicts a feed forward network with 2 hidden layers, each with dimension 3, for binary 
classification 

• We call these hidden layers because we only see what is put into the input layer and what comes out of 
the output layer, so in a sense what goes on in the middle layers is “hidden” to us 

• Note that neural networks can have more complex architectures, but we'll get started by considering just 
simple feed forward networks 

 
The output layer has a single node for binary classification and multiple nodes for multiclass classification 
 
Let’s now look at how to formulate the multilayer network mathematically, which will get a bit notation-heavy 

• Suppose that we have 2 observations of ! features, letting + represent a single observation as an ! by 1 
vector 

• We’ll suppose we have I hidden layers and that layer à has í: nodes in it, taking ℎ: to denote a vector 
corresponding to hidden layer à 

• Also suppose that the outer layer has ÿ nodes 
• Let ú" be a í" by ! weight matrix, while for à = 2,… , I let ú: be a í: by í:." weight matrix, and let 

ú)U" be an ÿ by í) weight matrix 
• Finally, take Φ to be some activation function 

 
We can then set up the recursively defined equations that are used to calculate the network output: 

ℎ" = Φ(ú"+)																																																																														Input	to	Hiddel	Layer	à
ℎ:U" = Φ(ú:U"ℎ:)∀à = 1,2, … , I − 1								Hidden	Layer	à	to	Hidden	Layer	à + 1
#K = Φ(ú)U"ℎ))																																																								Hidden	Layer	I	to	Output	Layer

 

 
Sometimes you might see architecture diagrams that depict the nodes as large rectangles meant to represent the 
vectors in the recursive equations 
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Let’s now examine the process by which we fit a multilayer network to find the optimal weight vector ô 

• We do so using backpropagation, which is essentially just a jargon-y way of saying the chain rule mixed 
with gradient descent, consists of a forward step and a backwards step 

 
We’ll demonstrate this using the simple architecture shown here: 

 
In this architecture we have: 

ℎ" = Φ(ô"+"), ℎ$ = Φ(ô$ℎ"), #K = Φ(ô4ℎ$) 
 
The Forwards Step 

• Let ô = (ô", ô$, ô4)-, and as with the perceptron, initialize ô with a set of random weights 
• Then run a randomly selected training point, +(#), through the network, recording the values for each 

layer of the network along the way 
• Thus, when the forward step is completed you have a #K and ℎ‹s for each layer of the network 

 
The Backwards Step 

• Let our cost function (sometimes called lost function) be § = (#K − #)$ 
• In order to update ô we use gradient descent, so ô%;Y = ô2:< − “∇§(ô2:<), where the gradient is taken 

with respect to ô, and “ is the learning rate hyperparameter 
o For the purposes of our derivation we’ll assume that § is differentiable with respect to all the 

weights (and in practice there are workarounds for activation functions where this isn’t the case) 

• Using the chain rule we can find ∑§ ∑ô"” , ∑§ ∑ô$” , and ∑§ ∑ô4”  to be: 

∑§
∑ô4

= ∑§
∑#K

∑#K
∑ô4

= 2(#K − #)Φj(ô4ℎ$)ℎ$ 

∑§
∑ô$

= ∑§
∑#K

∑#K
∑ℎ$

∑ℎ$
∑ô$

= 2(#K − #)Φj(ô4ℎ$)ô4Φj(ô$ℎ")ℎ" 

∑§
∑ô"

= ∑§
∑#K

∑#K
∑ℎ$

∑ℎ$
∑ℎ"

∑ℎ"
∑ô"

= 2(#K − #)Φj(ô4ℎ$)ô4Φj(ô$ℎ")ô$Φj4ô"+"(#)6+"(#) 
• We populate the values in the above expressions using what we found during the forwards step 
• We then update the weights to be ô%;Y = ô2:< − “∇§(ô2:<) 
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We then randomly choose another training instance and repeat the cycle until we’ve gone through all of the 
training points 

• Each of these cycles is called an epoch 
 
The indexing for more complex feed forward architectures can be much more of a headache, but they all follow 
the basic backpropagation outline laid out above 
 
Common adjustments to the gradient descent steps: 

• Sometimes in order to speed up calculations on all of the training points you’ll perform batch gradient 
descent, in which small batches of points are run through the forwards step with the same ô and then for 
the update you use the average of the batch’s backwards step 

• Instead of selecting “ by hand, you can let it be a random value for each step, the idea being that it can 
help you get out of local minima of the cost function 

o This is known as stochastic gradient descent 
 
Note that it is common in neural network modeling to use just a validation set, since cross-validation can take 
too long to be practical 
 
In sklearn you implement multilayer network classification with MLPClassifier and multilayer network 
regression with MLPRegressor 

• As their default activation function Φ, both of these use rectified linear unit activation (“ReLU”) 
• Other built-in activation functions are the identity activation (“identity”), the logistic activation 

(“logistic”), and the hyperbolic tangent activation (“tanh”) 

 
 
Identifying the network architecture that works best for you will depend, as is so often the case, on your 
application and the nature of your data set 

• Typically you’ll have to do some sort of tuning process to find the optimal architecture 
 
It has been proven mathematically that “a feed-forward network with a single hidden layer containing a finite 
number of neurons can approximate continuous functions on compact subsets of ℝ%, under mild assumptions on 
the activation function” 

• Thus, simple neural networks can represent a wide variety of interesting functions when given 
appropriate parameters 

o However, the aforementioned mathematical proof does not touch upon the actual algorithmic 
learnability of those parameters 

• Meaning that, while we can theoretically approximate any reasonable function with a high enough 
dimensional single hidden layer feed forward network, this is not always possible in practice 

 



 100 

It has been found that you can trade in the height of a single hidden layer for increased depth and get similar 
results, and wanting to better understand the possibilities and limitations of such architecture is where the field 
of deep learning comes from 
 
Deficiencies of this Method 

• Feed forward neural nets can very easily overfit the training data, although this can be mitigated with a 
variety of techniques 

o One such technique is to add dropout layers, where some of the nodes from the previous layer 
are randomly selected (using a pre-set frequency rate) to be set to 0 

• Gradients can vanish or explode when your networks get too deep because of the chain rule 
• Convergence can be slow and difficult 
• Cost functions often have many local minima in which you can get stuck when using normal gradient 

descent with a fixed learning rate 
• May need to use powerful computers to train complicated networks (i.e., your laptop may not suffice)  

 
Sample Code: 

#	import	the	model	
from	sklearn.neural_network	import	MLPClassifier	
	

#	make	an	mlp	classifier	with	1	hidden	layer	of	500	nodes	
mlp1	=	MLPClassifier(hidden_layer_sizes	=	(500,),	max_iter=1000)	
#	make	a	second	classifier	with	2	hidden	layers	of	200	nodes	each	
mlp2	=	MLPClassifier(hidden_layer_sizes	=	(200,	200,),	max_iter=1000)	
	

#	fit	the	two	classifiers	
mlp1.fit(X_train_train,	y_train_train)	

mlp2.fit(X_train_train,	y_train_train)	

	

#	import	packages	for	comparing	the	two	models	
from	sklearn.metrics	import	accuracy_score	
from	sklearn.metrics	import	confusion_matrix	
	

#get	training/validation	accuracy	&	confusion	matrix	for	the	1st	model	(1	hidden	layer	with	500	nodes)	
mlp1_training_acc	=	accuracy_score(y_train,	mlp1.predict(X_train))	
mlp1_validation_acc	=	accuracy_score(y_val,	mlp1.predict(X_val))	
mlp1_confusion_matrix	=	pd.DataFrame(confusion_matrix(y_val,	mlp1.predict(X_val)),		
																columns=[“predicted	”+str(i)	for	i	in	range(10)],	
																index=[“actual	”+str(i)	for	i	in	range(10)])	
	

#get	accuracies	&	confusion	matrix	for	the	2nd	model	(2	hidden	layers	with	200	nodes	each)	
mlp2_training_acc	=	accuracy_score(y_train,	mlp2.predict(X_train))	
mlp2_validation_acc	=	accuracy_score(y_val,	mlp2.predict(X_val))	
mlp2_confusion_matrix	=	pd.DataFrame(confusion_matrix(y_val,	mlp2.predict(X_val)),		
																columns=[“predicted	”+str(i)	for	i	in	range(10)],	
																index=[“actual	”+str(i)	for	i	in	range(10)])	

 
Notes on the above code: 

• Since we didn’t specify the activation function here, both of the models are using the default “relu” 
• When specifying layer sizes, note that you need to include a comma after the last number 
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48. keras 
Lecture Notebooks/Supervised Learning/Neural Networks/4. keras.ipynb 

 
As mentioned in an earlier lesson, keras is not as ubiquitous as sklearn, so you may need to install it on your 
machine if you haven’t used it previously 
 
From the documentation: “Keras is a deep learning API written in Python, running on top of the machine 
learning platform TensorFlow. It was developed with a focus on enabling fast experimentation. Being able to go 
from idea to result as fast as possible is key to doing good research.” 
 
Here we’ll go through an extended worked example illustrating how to build an MNIST classifier in keras 

• Since this is less of a conceptual lesson and more of a practical coding exercise, I’m mostly just going to 
copy over the notebook here 

• When reviewing this lesson in practice it’d probably be best to just look at the notebook 

We will mimic our sklearn networks from the last lesson and build an MNIST classifier. 
	
#	import		MNIST	dataset	stored	in	keras	
from	keras.datasets	import	mnist	
#	load	the	data	
(X_train,	y_train),(X_test,	y_test)	=	mnist.load_data()	
print(“Original	shape	of	X_train”,	np.shape(X_train))	

Original shape of X_train (60000, 28, 28) 
 
We'll now reshape the data so that it goes from a 28 by 28 grid of pixels to a single column of length 28*28 and 
scale it such that the maximum value becomes 1 instead of 255 

	

X_train	=	X_train.reshape(-1,28*28)	
X_test	=	X_test.reshape(-1,28*28)	
print(“The	new	shape	of	X_train	is”,	np.shape(X_train))	

print(“The	new	shape	of	X_test	is”,	np.shape(X_test))	

X_train	=	X_train/255	
X_test	=	X_test/255	

The new shape of X_train is (60000, 784) 
The new shape of X_test is (10000, 784) 
 
Before we can build our keras model, we first need to import the necessary model components 

	
from	keras	import	models	
from	keras	import	layers	
from	keras	import	optimizers	
from	keras	import	losses	
from	keras	import	metrics	
from	keras.utils.np_utils	import	to_categorical	

 
What we called feed forward networks in the last lesson are also called dense networks (because they are fully 
connected graphs) 

• We'll now walk through the process of making a dense neural networks using keras 
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Step 1: Make an empty model 
• Note that “sequential” here means we’ll be making a group of a linear stack of layers 

	
#	we	first	make	an	empty	model	
model	=	models.Sequential()	

 
Step 2: Add layers to the model 

• We will be building the neural network architecture shown below in this example 

 
• If you’re using a jupyter notebook, it’s very important to only run the layer-adding code chunk once, 

since it is going to add the prescribed layer to your model every time you run it 
• You add layers to the model with .add() 

o Note that you need to specify the input shape only for the first layer 
o As with sklearn, syntax dictates you include a comma after the input shape 

• We use ‘softmax’ activation for the output layer so that we can get probability estimates 
	

#####	ONLY	RUN	THIS	ONCE!	#####	
#	add	the	first	layer,	using	16	nodes	and	relu	activation,	and	passing	along	the	input	shape	information	
model.add(layers.Dense(16,	activation=‘relu’,	input_shape=(28*28,)))	
#	now	add	a	second	layer	with	relu	activation	and	16	nodes	
model.add(layers.Dense(16,	activation=‘relu’))	
#	finally,	add	the	10-node	(corresponding	to	digits	0-9)		output	layer	with	softmax	activation	for	probabilities	
model.add(layers.Dense(10,	activation=‘softmax’))	

 
Step 3: Compile the model with an optimizer, loss, and metric 

• The optimizer we’ll use is “rmsprop”, an algorithm implemented by keras to perform the 
backgpropagation step in neural network fitting 

• The loss we’ll use is “categorical entropy”, which stems from information theory and is a 
common/popular choice for classification problems 

• The metric we’ll use is simply accuracy, although you have the option to include multiple metrics 
• Note that the keras documentation lists other built-in options for all three parameters, and you can also 

define your own custom inputs 
	

#	now	let’s	compile	the	network	
model.compile(optimizer=‘rmsprop’,	loss=‘categorical_crossentropy’,	metrics	=[‘accuracy’])	

 
Step 4: Fit the model on the training data 
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• To fit the model we’ll look at 100 epochs using batch gradient descent with 512 observations per batch 
• First we’ll need to create our validation set, and when we pass it to our model we’ll need to convert it to 

categorical outputs using the keras function to_categorical 
o This function basically just one-hot encodes the data 

• Note that keras will print out a series of progress bars while it runs through the fitting process 
	
#	make	the	validation	set	
from	sklearn.model_selection	import	train_test_split	
X_train_train,X_val,y_train_train,y_val	=	train_test_split(X_train,	y_train,	test_size=0.2,	shuffle=True,	
																																																											 	 	 stratify=y_train,	random_state=440)	
	

#	now	fit	the	model	and	store	the	training	history	
history	=	model.fit(	X_train_train,	to_categorical(y_train_train),	epochs	=	100,	
	 	 batch_size	=	512,	validation_data=(X_val,to_categorical(y_val))	)	

 
Step 5: Examine epoch history loss and acccuracy 

• The data stored in history includes a dictionary with the training and validation losses/accuracies from 
which we can easily plot the metrics as a function of epoch 

• Looking at these metrics can allow us to choose a training period (i.e., number of epochs) for a neural 
network as well as compare performance between two different networks 

o In this example it seems that we start to overfit the data somewhere between epochs 20 and 30 
o We identify this by noting where the training and validation metrics begin to diverge 

	

history_dict	=	history.history	
print(history_dict.keys())	
dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) 
 

   
 
Step 6: Tune the model architecture 

• Let’s build a second network using two 32-node hidden layers and compare it with our original network 
that has two 16-node hidden layers 

o We’ll keep the rest of the model parameters the same 
	
#	initialize	the	second	model	
model2	=	models.Sequential()	
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#	change	the	structure	of	the	first	model	so	that	we	now	have	two	32-node	hidden	layers	
model2.add(layers.Dense(32,	activation=‘relu’,	input_shape=(28*28,)))	
model2.add(layers.Dense(32,	activation=‘relu’))	
model2.add(layers.Dense(10,	activation=‘softmax’))	
	
#	compile	the	model	
model2.compile(optimizer	=	‘rmsprop’,	=	‘categorical_crossentropy’,	metrics	=	[‘accuracy’])	
	
#	train	it	and	store	metrics	for	comparison	
history2	=	model2.fit(X_train_train,	to_categorical(y_train_train),	epochs	=	100,	
																							batch_size	=	512,	validation_data	=	(X_val,	to_categorical(y_val)))	
	

history_dict2	=	history2.history	
	

   
 
Step 7: Selecting an architecture 

• From the above plots, it looks like the 32x32 network outperforms the 16x16 network, so let’s find the 
epoch for the 32x32 network that resulted in the lowest validation loss and use that for our final model 
	

print(“The	epoch	that	had	the	lowest	model	2	validation	loss	was”,	

					range(1,102)[np.argmin(history_dict2[‘val_loss’])])	

	
#	make/train	net	2	using	this	optimal	epoch 
model2	=	models.Sequential()	
model2.add(layers.Dense(32,	activation=‘relu’,	input_shape=(28*28,)))	
model2.add(layers.Dense(32,	activation=‘relu’))	
model2.add(layers.Dense(10,	activation=‘softmax’))	
model2.compile(optimizer	=	‘rmsprop’,	loss	=	‘categorical_crossentropy’,	metrics	=	[‘accuracy’])	
history2	=	model2.fit(X_train,	
																							to_categorical(y_train),	

																							epochs	=	range(101)[np.argmin(history_dict2[‘val_loss’])],	
																							batch_size	=	512,	
																							validation_data	=	(X_val,	to_categorical(y_val)))	
history_dict2	=	history2.history	
The epoch that had the lowest model 2 validation loss was 28	
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Step 8: Predicting on the test set 
• For the purposes of this lesson, we’ll assume we are now done with the model selection process, so we 

can now use our model to make predictions in a fashion nearly identical to that of sklearn 
o Note that model.predict(X_test) produces a set of probabilities for each test observation (i.e., the 

probability that it is a specific digit 0-9) 
o For our prediction we’ll generally just want to take the one with the highest probability 

 
#	this	gives	the	probability	for	each	image	in	the	test	set	being	digit	0-9,	so	each	point	has	an	associated	array	
print(model2.predict(X_test))	
[[1.1564995e-06 1.7546260e-11 1.3643604e-06 ... 9.9780113e-01 
  3.6319830e-07 9.8308274e-06] 
 [4.8516970e-08 1.7183842e-03 9.9827754e-01 ... 1.7715241e-12 
  1.6297822e-06 2.8923276e-15] 
 [2.2510280e-06 9.9844968e-01 1.2244676e-04 ... 9.8002213e-04 
  2.5528760e-04 5.7948323e-06] 
 ... 
 [5.8266050e-09 4.8411105e-11 1.2913644e-10 ... 3.2273707e-05 
  1.5033721e-05 3.7391433e-03] 
 [2.1717947e-09 1.1105325e-07 1.8425939e-10 ... 1.4940962e-08 
  5.7690368e-06 6.7102626e-09] 
 [4.0267051e-10 5.4579181e-14 5.2682875e-10 ... 6.3181224e-14 
  1.4230515e-08 4.2205134e-14]] 
 
#	this	simply	returns	the	most	likely	classification	for	each	test	point,	which	can	be	used	for	calculating	accuracy	
preds	=	np.argmax(model2.predict(X_test),	axis=1)	
print(preds)	
[7 2 1 ... 4 5 6] 
 
from	sklearn.metrics	import	accuracy_score	
print(np.round(100*accuracy_score(y_test,	preds),2))	
96.51 

 
Looks like we’re getting over 96% accuracy, not bad! 
 
  



 106 

49. Introduction to Convolutional Neural Networks 
Lecture Notebooks/Supervised Learning/Neural Networks/5. Introduction to Convolutional 

Neural Networks.ipynb 
 
Convolutional neural networks were developed to work with grid-based data sets, and are therefore particularly 
useful for classification problems involving images and their natural pixel-based grid structure 

• The basic idea underlying a convolution neural network is “What if we paid attention to small portions 
of an image instead of looking at the entire thing at once?” 

 
While a feed forward model works by taking a weighted sum of the values in every single pixel (meaning it 
looks at the entire image all at once), a convolutional neural network slides a small square grid along the image, 
only focusing on what is enclosed in the small grid at each step in the sliding process 

• As we’ll see shortly, this sliding is actually a series of weighted sums whose results themselves get 
stored in a grid 

 
 
Let’s look at the three parts of a convolutional neural network 

• Rather than go through a wild adventure in notation-tracking, we’ll use some arbitrary example grids 
 
Part 1 – The Convolutional Layers 
 
Suppose that our image is a 10x10 grid represented by the 2D array below 

 
 
We’ll slide a 3x3 grid (called a filter) around this array, in this example using some randomly chosen weights to 
demonstrate the basics of the method 

• This is a fairly standard size for the filter, although 5x5 is also common 
• There are 8x8 possible grid locations for a 3x3 grid over a 10x10 grid 
• More generally, if your grid has dimensions ¡ × ^ and your filter is a fi × fi grid, then there will be 

(¡ − fi + 1) ⋅ (^ − fi + 1) potential positions 
 
With this filter over the green highlighted points, we “focus” on this square of the image using a dot product 
between the two arrays 
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The outputs of these 8*8 dot products are then fed into an activation function and stored in their own 8x8 grid, 
which makes up the first hidden layer of the network 

• So in this simple example where we’re using the identity function as our activation function, we’d have 
6057 as the (1, 2) entry of the hidden layer 

 
 
In a real convolutional neural net our hidden layer would have 3 dimensions, the first two representing the 
(¡ − fi + 1) ⋅ (^ − fi + 1) grid, and the third indicating that we do this sliding grid process multiple times 

• The output from each sliding grid process is stored in the depth of the network 
• If you did the filter process 16 times, for example, the dimensions of the hidden layer would be 

(¡ − fi + 1) ⋅ (^ − fi + 1) ⋅ 16 
• An activation is then applied to each value in the hidden layer, with the ReLU function being the usual 

choice 
 
Summarizing the structure of the first convolutional layer: 

 
 
Padding and Stride Values 

• You may notice that the sliding grid process pays less attention to the borders of your image than the 
inside of the image 

o To prevent loss around the borders it is common to add padding cells around the outside of your 
input grids 

o These are extra rows and columns consisting of all 0s 
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• You can also choose different stride values for the sliding grid 
o The convolutional layers stride value is how many grid points you slide to the right and down 
o A stride value of 1, what we used in the above example, is pretty typical, but in practice you can 

choose any strid value you’d like 
 
Including padding can provide significant improvement for a convolutional neural network, for example in the 
keras-implemented CNN described in the sample code below: 

   
 
Part 2 – The Pooling Layers 
 
It has become common practice to add what are known as pooling layers after your convolutional layers 

• These layers shrink the size of our grids in order to down-sample our observations and shrink the 
number of parameters needed to fit the model 

 
Pooling layers work by sliding a square grid over each grid in the convolutional layer, keeping only the 
maximum value captured in the square 

• The most common pooling square size is 2x2 with a stride value of 2, although you could change this if 
you feel so inclined 

 
Looking at an example 8x8x2 convolution layer using 2x2 pooling squares, we can see this in practice: 

 
You could conceivably choose alternative pooling operations like taking the average of the entries in the square, 
but max pooling has become more or less standard convention since it has been found to work better in practice 

• Note that pooling hidden layers have the same depth as their input layer, in contrast to the convolutional 
layers which generally have a larger depth (i.e., more dimensions) than their input layer 

 
Part 3 – The Fully Connected Layer 
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After building a number of alternating convolutional and pooling layers, you end the network with a fully 
connected layer, the kind of layer we have dealt with in prior lessons 

• We can therefore think of the convolutional and pooling layers as a sort of preprocessing step for the 
dense neural network we build as the last step 

 
Prior to going to the fully connected layer, we will flatten (make into a single column vector) the hidden layer 

• Note this is one of the main reason we pool in earlier layers 
• Without pooling, the number of parameters we’d need to fit in the fully connected layers would be huge 

 
In the sample code below we’ll illustrate how to implement a padding-inclusive convolutional neural network in 
keras that yields the following training metrics as a function of epoch:  

   
 
Sample Code: 

#	import	necessary	keras	components	
from	keras	import	models	
from	keras	import	layers	
from	keras	import	optimizers	
from	keras	import	losses	
from	keras	import	metrics	
from	keras.utils.np_utils	import	to_categorical	
	

#	need	to	reshape	data	for	use	with	convolutional	neural	net	(different	from	dense	neural	nets)	
X_train	=	X_train.reshape((60000,28,28,1))	
X_test	=	X_test.reshape((10000,28,28,1))	
	

#	now	that	we’ve	got	the	right	shape,	make	validation	set	
from	sklearn.model_selection	import	train_test_split	
X_train_train,X_val,y_train_train,y_val	=	train_test_split(X_train,	y_train,	test_size=0.2,	
																																																										shuffle=True,	stratify=y_train,	random_state=440)	
	

#	make	an	empty	base	model	
model	=	models.Sequential()	
	

#	add	our	first	convolutional	layer	
model.add(	layers.Conv2D(32,	(3,3),	activation=‘relu’,	input_shape	=	(28,28,1),	padding=‘same’	))	
	



 110 

#	add	our	first	max	pooling	layer	
model.add(	layers.MaxPooling2D(	(2,2),	strides=2)	)	
	

#	add	a	few	more	layers,	alternating	between	conv.	and	pooling	layers,	this	time	using	64-node	conv.	layers	
model.add(	layers.Conv2D(64,	(3,3),	activation=‘relu’,	input_shape	=	(28,28,1))	)	
model.add(	layers.MaxPooling2D(	(2,2),	strides=2)	)	
model.add(	layers.Conv2D(64,	(3,3),	activation=‘relu’,	input_shape	=	(28,28,1))	)	
model.add(	layers.MaxPooling2D(	(2,2),	strides=2)	)	
	

#	now	add	the	fully	connected	layer	
#	need	to	flatten	the	data	
model.add(layers.Flatten())	

#	add	a	single	dense	hidden	layer,	here	using	64	nodes	
model.add(layers.Dense(64,	activation=‘relu’))	
#	finally	include	an	output	layer,	here	with	10	nodes	to	match	the	digits	0-9	
model.add(layers.Dense(10,	activation=‘softmax’))	
	

#	examine	the	model	architecture	
model.summary()	

	

#	compile	the	network	
model.compile(optimizer=‘rmsprop’,	loss=‘categorical_crossentropy’,	metrics=[‘accuracy’])	
#	fit	the	model	(this	will	take	a	little	while,	so	we’ll	limit	ourselves	to	40	epochs)	
epochs=40	
history	=	model.fit(X_train_train,	to_categorical(y_train_train),	epochs=epochs,		
																						batch_size=512,	validation_data=(X_val,to_categorical(y_val)))	
history_dict	=	history.history	

 
Notes on the above code: 

• This assumes you’ve previously imported the MNIST data set using keras and done the standard 
preprocessing sequence (reshaping, scaling, validation split, etc.) 

• When specifying the convolutional layer Conv2D(32) indicates that we want a convolutional layer with 
depth 32, (3,3) is our sliding grid size, we’re using ‘relu’ activation, and since we’re working with 
28x28 grayscale images our input shape is (28, 28, 1) 

o If we instead had RGB images we’d specify an input shape of (28, 28, 3) 
o Including padding=‘same’ tells keras to include border padding for the images, which tends to 

help performance since border regions are otherwise neglected by the model 
• Specifying the max pooling layer with (2, 2) and strides=2 tells keras that we are using a 2x2 pooling 

squares with a stride value of 2, the common choice illustrated above 
• Looking at the training/validation accuracy/loss plots above we’d probably use 10 or so epochs in our 

final model, at which point we could obtain predictions using the same model.predict(X_test) syntax 
we’ve seen previously 
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50. Future Directions with Neural Networks 
Lecture Notebooks/Supervised Learning/Neural Networks/6. Future Directions.ipynb 

 
What we’ve learned about so far: 

• Perceptrons 
• Feed forward networks 
• Basic convolutional neural networks 

 
Not surprisingly, this barely scratches the surface of the field of neural networks 
 
 
Some example topics we haven’t been able to touch on: 
 
Theoretical 

• Recurrent neural networks 
• Autoencoders 
• Transformers 
• Generative adversarial networks 
• And more! 

 
Practical 

• More applications of keras 
o Documentation: https://keras.io/ 

• tensorflow 
o Documentation: https://www.tensorflow.org/api_docs 

• PyTorch 
o Documentation: https://pytorch.org/ 

 
 
Potentially useful resources for future learning: 
 
Theoretical 

• Neural Networks and Deep Learning 
 
Practical 

• Deep Learning with Python is good for learning how to implement things in keras 
• Hands-On Machine Learning with Scikit-Learn, Keras and Tensorflow is a good general purpose python 

machine learning book 
• Deep Learning with PyTorch is a good resource for PyTorch 
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51. t-distributed stochastic neighbor embedding (tSNE) 
Lecture Notebooks/Unsupervised Learning/Dimensionality Reduction/4. tSNE.ipynb 

 
t-distributed stochastic neighbor embedding (or tSNE) reduces the dimension of a set of m features, X, typically 
down to 2 or 3 dimensions for the purposes of data visualization 

• A primary goal of tSNE is to ensure that points close to one another in the higher dimensional space are 
also close to one another in the lower dimensional projection 

• The way it does so is to estimate pairs of probability distributions in such a way as to ensure that they 
are as close to one another as possible 

 
The basic outline of the algorithm is as follows: 
 

1. We convert the Euclidean distance for all points +# , +/ into a conditional probability í#,/ 
o This is done by imagining a Gaussian distribution around +# and then comparing the “normal 

distance” of +/ vs the sum of all other “normal distances” 
o The precise mathematical formula for this is thus 

 

í/|# =
exp 4−fl−+# − +/fl$ 2r#$” 6

∑ exp(−‖−+# − +)‖$ 2r#$⁄ ))f#
 

 
o Think of í/|# as the probability that +# would choose +/ as its neighbor, and we take í#|# = 0 

  
2. For every point +# in high dimensional space we will have a low dimensional counterpart ## onto which 

we map +# 
o Similar to í/|# we have ‡#|/, which gives the probability that ## would choose #/ as its neighbor 

and for which we also have ‡#|# = 0 
o This has the mathematical form 

 

‡/|# =
41 + fl## − #/fl$6

."

∑ (1 + ‖## − #)‖$).")f#
 

 
o This is where the “t-distributed” part of tSNE’s name comes from, since the numerator and 

denominator in the above expression come from the probability density for the t-distribution with 
1 degree of freedom 

 
3. If we’re preserving these pairwise distances well, then í/|# should be close to ‡/|#, so we now minimize a 

cost function that measures the difference between í/|# and ‡/|# using gradient descent 
o The specific cost function is the Kullback–Leibler divergence 
o Once completed, the optimal ## values are spit out by the algorithm 

 
The r# values in Step 1 are determined based on a hyperparameter called the perplexity of the tSNE 

• With smaller perplexity values the algorithm tends to focus on more local behavior, while larger 
perplexities lead to a greater focus on more global behavior 

• Perplexity values between 5 and 50 tend to work well 
 
We implement tSNE in sklearn using the TSNE package 
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There are major drawbacks that limit its utility elsewhere, but when used purely for data visualization tSNE can 
offer a significant improvement over PCA 

• Looking for example at the MNIST data: 

 
 
Disadvantages of tSNE 

• The “S” stands for “Stochastic”, meaning that your results change slightly each time 
o You could get around this to an extent by setting a random state 

• You can’t really use this to make predictions on new data 
o Unlike PCA there isn’t a procedure that will map new points onto the lower dimensionality space 

• The magnitude of the distances between clusters shouldn’t be interpreted as a meaningful metric 
o Basically local distances are preserved well, but things that are far away get distorted in the 

projection process 
• tSNE results should not be used as statistical evidence or proof of something since it is not a formal 

statistical test 
• Sometimes tSNE can produce clusters on data that are not actually clustered in the original data space 

o Thus, it is good to run the data through tSNE a few different times with different perplexities to 
ensure that the clustering persists 

 
Sample Code: 

#	import	TSNE	
from	sklearn.manifold	import	TSNE	
	

#	make	the	tSNE	object	
tsne	=	TSNE(n_components=2)	
#	get	the	transformed	data	
X_tsne	=	tsne.fit_transform(X)	

 
Notes on the above code: 

• The n_components=2 parameter is telling TSNE to project down to 2-D space 
o This is the default value, but there might be applications where you’d rather use 3 dimensions 

• In this example we have used the default perplexity value (30 for this package), but if we wanted to 
instead use a perplexity value of, say, 20 we would call TSNE(2, perplexity=20) 
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52. What is Clustering? 
Lecture Notebooks/Unsupervised Learning/Clustering/1. What is Clustering.ipynb 

 
Another common unsupervised learning task is clustering 
 
In clustering we look to identify groupings of similar points in otherwise unlabeled data, " 
 
This could be done for any number of reasons, including: 

• Identifying market segments 
• Locating similar product users 
• etc. 

 
As a simple toy example, consider the following data ": 

 
 
Given this data, a clustering algorithm might produce something like the following: 

 
 
This is, of course, a painfully simple example 

• In the next lessons we’ll look at some more complex algorithms with real-world utility 
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53. k-Means Clustering 
Lecture Notebooks/Unsupervised Learning/Clustering/2. k Means Clustering.ipynb 

 
Note that this method has basically nothing to do with the k-nearest neighbors algorithm discussed earlier 
 
Suppose we have n observations of m features, X, that we suspect could reasonably be segmented into k groups 

• The k-means algorithm provides us a mechanism for attempting to find these groups 
 
In k-means clustering we use the following procedure  

1. Select k initial points as a first guess for the k different centroids for each group, defined to be the 
average position of all the points within a group 

o Hence the “mean” in k-means clustering 
2. Group all n points according to which centroid is closest 
3. Recalculate the k centroids, using the groups found in Step 2 
4. Repeat Steps 2 and 3 until you reach a stage where no observations change groups 

 
Let’s look at a practical example where we use k-means clustering to group some toy data: 

 
 
For this example we’d be finished after just the two rounds shown above, since the three groups are now 
effectively separated and additional rounds would not cause points to change groups 
 
We implement k-means clustering in sklearn with KMeans, and using this functionality we easily recover the 
same groupings found above: 

 
 
For this example we knew to choose I = 3 beccause we’d randomly generated the points around three locations 

• For real-world data, though, we will typically need to choose k 
• Typically you will have to run the algorithm multiple times for different values of k and examine some 

metrics to determine which value of k is the “best” 
o Here we’ll look at two potential metrics for making this choice 
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The first approach we can take to determine an appropriate k value is called the elbow method 

• In this method we calculate the inertia of the resulting clustering for each value of k and then look for an 
elbow in the plot of inertia against k 

 
For a given clustering with k clusters, the inertia is defined as 

3dist7"(#), u(#)8$
%

#&"

 

where "(#) is the ith observation in the data set, u(#) is the centroid of the cluster to which observation i is 
assigned, and dist(ç, é) denotes the distance between points a and b (typically the Euclidean distance) 
 
We think of clustering with low inertia as being good, with the caveat that we cannot simply choose the value of 
k that gives the lowest inertia 

• I.e., by setting I = 2 we could arbitrarily get an inertia of 0, but that would not be useful 
 
In practice we get inertia values from sklearn’s KMeans object using .inertia_ 
 
The second approach we’ll look at is what’s known as the silhouette method 
 
The silhouette score for a given observation I is defined to be 

é − ç
max(ç, é) 

where a is the average distance between observation i and the rest of the points in its assigned cluster, and b is 
the average distance between observation i and the points in the next closest cluster 
 
A higher silhouette score is indicative of a “good” clustering, and we will generally want to compare the 
average silhouette score over all n observations for various values of k 
 
In sklearn the silhouette_score function gives the averaged cluster score, and silhouette_samples gives the 
scores for each individual observation 
 
Here is what the inertia and silhouette score look like for clusters of varying k values fit on the sample data 
shown in the leftmost plot below: 

 
 
It can also be helpful when selecting k to look at what is known as the silhouette diagram, which plots the 
distribution of silhouette scores for each cluster along with the sample average score 

• Our goal with such plots is to avoid “bad” clusters, or those with distributions that lie completely below 
the average score line like the 2nd and 5th I = 6 clusters shown below 
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o Similarly, clusters like the 1st I = 3 cluster where the vast majority of points lie below the 
average score line are also undesirable 

o Points with negative silhouette scores, like the 2nd I = 4 cluster shown below are particularly 
strong negative indicators 

• See associated notebook for the code needed to produce the silhouette diagram shown below (for the 
same sample data as above) 

 
 
Thus, in this example we would choose I = 5 because: 

• It is located near the elbow in the inertia plot 
• It has the highest silhouette score 
• It has no “bad” (or nearly bad) clusters in the silhouette diagram 

 
k-means has been shown to be a fast and scalable clustering algorithm that’s easy to implement, however it does 
have some limitations: 

• Random initialization of centroids can lead to suboptimal solutions 
o A common approach to deal with this is to run the algorithm multiple times with a different 

random initial set of centroids each time, and then choose the run that provided the lowest inertia 
o In sklearn the default is to run the k-means algorithm 10 times 

§ This can be changed with the n_init argument 
• Choosing k can be tricky 

o The elbow method is a bit course 
o The silhouette method can be computationally expensive 

• Can be ill-behaved when: 
o Clusters have varying sizes 
o Clusters have different densities or nonspherical shapes 
o Features are on different scales 

§ Always scale your data prior to fitting KMeans to combat this 
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Sample Code: 
#	import	KMeans	
from	sklearn.cluster	import	KMeans	
	

#	make	a	KMeans	object	using	k=3	
kmeans	=	KMeans(3)	
	

#	fit	the	kmeans	object	
kmeans.fit(X)	

	

#	get	the	clusters	
clusters	=	kmeans.predict(X)	
	

#	now	plot	the	final	clustering	
plt.scatter(X[clusters==0,0],	X[clusters==0,1],	c=‘b’,	label=“$k$-Means	Cluster	0”)	
plt.scatter(X[clusters==1,0],	X[clusters==1,1],	c=‘green’,	label=“$k$-Means	Cluster	1”)	
plt.scatter(X[clusters==2,0],	X[clusters==2,1],	c=‘k’,	label=“$k$-Means	Cluster	2”)	
#	include	the	centroid	locations	
plt.scatter(kmeans.cluster_centers_[:,0],		

												kmeans.cluster_centers_[:,1],		

												c=‘r’,	marker=‘x’,	s=100,	label=“$k$-Means	Centroid”)	
plt.legend(fontsize=14)	
plt.title(“$k$-Means	Clustering”,	fontsize=20)	
plt.show()	

	

#	look	at	the	cluster’s	inertia	
print(	kmeans.inertia_	)	

	

#	show	the	cluster	wide	silhouette	score	
print(	silhouette_score(X,	clusters)	)	

#	show	scores	for	each	observation	in	X	
print(	silhouette_samples(X,	clusters)	)	

 
Notes on the above code: 

• We get the centroids for the final clusters using cluster_centers 
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54. Hierarchical Clustering 
Lecture Notebooks/Unsupervised Learning/Clustering/3. Hierarchical Clustering.ipynb 

 
Hierarchical clustering is another technique for grouping n observations of m features stored in a matrix " 

• A nice feature of hierarchical clustering, in contrast to k-means, is that we do not need to guess a number 
of clusters prior to fitting the algorithm 

• Instead we use a dendrogram (explained below) to make an informed choice after running the algorithm 
 
In hierarchical clustering you start from each observation being its own cluster and slowly work your way to 
having every observation in a single cluster 

• This is done by combining clusters according to an inter-cluster distance measure that you determine 
prior to fitting the algorithm that we’ll call • 

• Starting from • = 0 you slowly increase • and when any pair of clusters are a distance • apart from one 
another, you combine them into a larger cluster 

• Continue increasing the value of • until you have a final cluster that encompasses all points 
 
Let’s demonstrate this idea with a series of sketches: 

       

    
 
The clustering information is stored in a dendrogram (the lower right chart shown above) 

• The dendrogram illustrates the sample clustering as a function of •, with • increasing as you move up 
the chart 

• A variety of clusterings can then be selected depending upon which distance you choose to make a cut 
point, that is to say, how high up the dendrogram we go 

 
Rather than sklearn, we’ll use scipy to perform hierarchical clustering in practice 

• scipy keeps its hierarchical clustering functions/objects in the cluster.hierarchy module 
• In particular, we will want dendrogram and linkage 

o linkage returns an array (known as the linkage matrix) that tracks every time that two clusters 
merge, which can then be visualized using dendrogram 
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• Once you’ve identified an appropriate cut point, you get the cluster label for your data using fcluster 
 
Applying these to some sample data and illustrating different cut points, we can find: 

 
 
As in k-means clustering, we could use an inertia/elbow plot or silhouette plots to help us determine what to set 
as our threshold value, but sometimes it is reasonable to just use a visual inspection 

• Looking at this particular dendrogram a threshold that produces three clusters looks reasonable 
 
There may also be other consideration that come from your particular application/problem 

• For example, maybe you are working on a market segmentation problem for a business, and while 
additional market segments (clusters) might increase profit, they would also have an associated cost 

 
Sample Code: 

#	import	dendrogram	and	linkage	from	scipy	
from	scipy.cluster.hierarchy	import	dendrogram,	linkage	
	

#	first	we	run	linkage	
Z	=	linkage(X,	method=‘single’)	
#	this	returns	a	numpy	array	that	we	will	now	describe	and	print	out	
print(	pd.DataFrame(Z,columns	=	[‘cluster_1’,	‘cluster_2’,	‘distance’,	‘new_cluster_size’])	)	
	

#	now	plot	the	dendrogram	
dendrogram(Z)	

plt.show()	

	

#	need	to	import	fcluster	to	get	clusters	for	each	point	
from	scipy.cluster.hierarchy	import	fcluster	
#	get	the	clusters,	here	using	the	default	color_threshold	value	
fcluster(Z,	t=0.7*max(Z[:,2]),	criterion=‘distance’)	

 
Notes on the above code: 

• We can control how linkage measures the distance • between clusters using the method argument 
o The default method is ‘single’, which finds the minimum distance between any pair of points 

between two clusters 
o Others include ‘average’, which finds the average distance between any pair of points between 

two clusters and ‘centroid’, which finds the distance between the centroids of two clusters 
• There is an argument in dendrogram called color_threshold, with a default value of 0.7*max(Z[:,2]), that 

colors the clusters 
 


