Crime Patterns and Predictors in California Counties

Erdős Institute Data Science Project

Contributors: Deepesh Singhal Yuxin Lin Feride Kose Leonard Afeke

Mentor: David Ken

 \ddot{O}

Background

- Crime rates depend on a variety of socio-economic and demographic factors.
- Identifying the strongest drivers can help policymakers allocate resources more effectively.

Goal

- We aim to understand which factors are the most predictive of high or low crime rates in California counties
- Specifically, we ask:
- What are the most important **socioeconomic factors** linked to crime rates?

(e.g., welfare spending, education, unemployment etc.)

• Do these factors differ across urban, suburban, and rural counties?

Data Collection

We collected data in the following categories:

- Crime statistics: violent-crime counts and clearance rates.
- Demographics: population, median age, religious composition.
- Socioeconomic indicators: income, poverty, unemployment, housing.
- Government expenditure: spending on education, health, policing, etc.
- Education: student dropout rates and public-school enrollment.

Data Source		
Category	Source	
Crime data	CA Department of Justice	
Demographic	U.S. Census / CA DOF / ARDA	
Economic indicators	U.S. Census /BLS	
Government spending	State Controller's Office	
Education & Health	U.S. Census ACS	

Data imputation and Feature Engineering

Missing Values: Except for the crime stats which are available from 1985, most of the data are available from 1990 or from a later year. We consider two strategies for dealing with missing data:

- Row deletion for missing values, thus using data from 2010 onwards (works best for Urban/Rural).
- Time-series imputation: Fit a simple linear regression (feature vs. year) per county and fill missing values (works best for Suburban).

Inflation & per-capita adjustment:

- Divide all monetary features by that year's CPI
- Normalize by county population
- For example:
 - $\circ \quad Adjusted_income = median \ household \ income \ / \ CPI \ index$
 - Adjusted_police_budget = Police budget / (Population * CPI index)

Feature Selection

We start with 30 engineered features across Demographics, Economics, Housing, Education, Health and Expenditure.

To avoid overfitting and retain interpretability, we design a feature selection function that recursively drops features via a DFS search that maximizes our out-of-sample R^2 score. We thus arrive at a subset of the features that performs well.

For example in the urban model we pick a set of 9 features using DFS.

Evaluation Metrics

1. Mean Squared Error (*MSE*)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

2. R^2 score:

$$R^2 = 1 - \frac{MSE(model)}{MSE(y_{train})}$$

Why out-of-sample R^2 score ?

$$R^2 = 1 - \frac{MSE(model)}{MSE(baseline)}$$

• Crime rates for different years within the same county are close to each other.

Baseline =
$$\overline{y_{test}}$$
Predicting $\overline{y_{test}}$ is not a valid
baseline model.
Get negative R^2 score!!Baseline = $\overline{y_{train}}$ The R^2 score measures the ability of
the model in predicting the crime rate
in a new county.

Validation method

We use the following three cross-validation methods:

- ◆ 5-Fold Cross-Validation
- Leave-One-County-Out Validation
 - For each iteration, one county is held out as the test set. The model is trained on all **other counties**.
- Time-Series Cross-Validation
 - Trained on data up to 2018 and tested on data from 2019 onward.

Models considered: Ridge regression, Random Forests and XGBoost.

Modeling Pipeline

• We predict the log crime rate with Ridge regression:

log(y) = Ridge(Features)

- We train three separate models for: Urban, Rural, Suburban counties.
- We use Principal component analysis and Ridge regularization to reduce overfitting.
- The ridge pipeline:

Final Result

The MSE and R^2 of the urban model:

Model	Туре	MSE	MR2
ridge	Regular train	6.394766464749542e-07	0.8297497349280686
	Regular val	7.241765287692242e-07	0.825614088429796
	County train	6.087137264289414e-07	0.8351574335910459
	County val	8.185807957824113e-07	0.7175272572112615
	Time train	5.290472022998657e-07	0.8495139146143015
	Time val	1.3650382926719547e-06	0.691964027584281
	Test	5.397108884719842e-07	0.8161354855674486
الـــــــا	J		ILJ

We see that our model predicts the crime rate of the urban counties successfully.

Feature importance of the Urban model

The Top 4 important features are:

- 1. Security spending/social spending
- 2. Clearance rate
- 3. Adjusted income
- 4. Drop-out rate

Conclusion

- 1. Urban counties: Ridge model generalizes well across counties and years.
- 2. Key levers to reduce the crime are:
- Increase the security expenditure (e.g. police budget, prison budget).
- Effectively solve the crimes to increase the clearance rate.
- Increase resident's incomes.
- Reduce the dropout rate for teenagers.

For the Suburban and Rural counties...

- We carry out a similar analysis on the suburban & rural counties.
- The cross-county R2 score are around 0.4 and 0.3, respectively.
- We suspect that the data quality for suburban and rural counties is not as accurate.

Thank you