Statistical Machine Learning Techniques for Predicting Lung Cancer Prevalence

Adekunle Ajiboye, Fekadu Bayisa, Zhuoran Wang

Data Science Bootcamp Trainees

Erdős Institute

April 21, 2025

Introduction

-			D	
	loto '	CIODCO.	Kootcompo I	L KOUDOOC
	ald.	менсе	DODICATIO	I l'allees

æ

Lung cancer poses a major public health concern

- 一司

Lung cancer poses a major public health concern

Motivation: To learn the underlying factors contributing to lung cancer prevalence

3/17

- 個 ト - ヨ ト - ヨ ト

Lung cancer poses a major public health concern

Motivation: To learn the underlying factors contributing to lung cancer prevalence

Goal: To identify key features associated with lung cancer incidence

3

イロト イポト イヨト イヨト

Table: General overview of study features, with the underlying population being individuals aged 18 and over

Group	Features	Source
Demographics	% Male, % Female, % Black, % White, % Hispanic, %	US Census ACS
	Age ≥65	
Behavioral	Prevalence of Smoking, Binge Drinking, and Obesity	CDC PLACES
Socioeconomic	% Below Poverty, Social Deprivation Index (SDI)	US Census, Graham Center
Environmental	PM2.5 Air Quality ($\mu g/m^3$)	EPA Downscaler

- 3

4/17

人口区 人間区 人居区 人居区

Table: General overview of study features, with the underlying population being individuals aged 18 and over

Group	Features	Source
Demographics	% Male, % Female, % Black, % White, % Hispanic, %	US Census ACS
	Age ≥65	
Behavioral	Prevalence of Smoking, Binge Drinking, and Obesity	CDC PLACES
Socioeconomic	% Below Poverty, Social Deprivation Index (SDI)	US Census, Graham Center
Environmental	PM2.5 Air Quality ($\mu g/m^3$)	EPA Downscaler

Feature engineering: Age-based 6 features are created from the existing gender and race related features

< 回 ト く ヨ ト く ヨ ト

Table: General overview of study features, with the underlying population being individuals aged 18 and over

Group	Features	Source
Demographics	% Male, % Female, % Black, % White, % Hispanic, %	US Census ACS
	Age ≥65	
Behavioral	Prevalence of Smoking, Binge Drinking, and Obesity	CDC PLACES
Socioeconomic	% Below Poverty, Social Deprivation Index (SDI)	US Census, Graham Center
Environmental	PM2.5 Air Quality ($\mu g/m^3$)	EPA Downscaler

Feature engineering: Age-based 6 features are created from the existing gender and race related features

Unobserved or missing values are removed, as there is no clear rationale for imputation

Statistical machine learning techniques

Data Science Bootcamp (Trainees)

Model formulation: Let Y_i denote the number of lung cancer cases in a population of size N_i

Model formulation: Let Y_i denote the number of lung cancer cases in a population of size N_i

We model Y_i using Poisson distribution given by

$$P(Y_i = y_i) = \frac{(N_i \lambda_i)^{y_i} e^{-N_i \lambda_i}}{y_i!}, \ i = 1, 2, \cdots, n$$

Poisson generalized linear model: We model the incidence rate λ_i as $\lambda_i = \exp(\mathbf{x}_i^\top \boldsymbol{\beta})$

Poisson generalized linear model: We model the incidence rate λ_i as $\lambda_i = \exp(\mathbf{x}_i^\top \boldsymbol{\beta})$

Using the data y_1, y_2, \ldots, y_n , the objective function with elastic net regularization can be given by

$$\mathcal{L}(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \left[y_i \log N_i + y_i \mathbf{x}_i^{\top} \boldsymbol{\beta} - N_i e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}} - \log(y_i!) \right] + \alpha \left[\gamma \|\boldsymbol{\beta}\|_1 + \frac{1-\gamma}{2} \|\boldsymbol{\beta}\|_2^2 \right], \quad \alpha \ge 0, \ \gamma \ge 0$$

Poisson generalized linear model: We model the incidence rate λ_i as $\lambda_i = \exp(\mathbf{x}_i^\top \boldsymbol{\beta})$

Using the data y_1, y_2, \ldots, y_n , the objective function with elastic net regularization can be given by

$$\mathcal{L}(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \left[y_i \log N_i + y_i \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} - N_i e^{\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}} - \log(y_i!) \right] + \alpha \left[\gamma \|\boldsymbol{\beta}\|_1 + \frac{1-\gamma}{2} \|\boldsymbol{\beta}\|_2^2 \right], \quad \alpha \ge 0, \ \gamma \ge 0$$

We use this regularization approach to select features that are associated with the lung cancer incidence rate

XGBoost with Poisson Loss Function: We model the rate λ_i using tree at *t*-th iteration as $\log(\lambda_i) = f(\mathbf{x}_i, \eta_t)$, which is parameterized by η_t

< 4 → <

XGBoost with Poisson Loss Function: We model the rate λ_i using tree at *t*-th iteration as $\log(\lambda_i) = f(\mathbf{x}_i, \eta_t)$, which is parameterized by η_t

The objective function in XGBoost with Poisson loss function can be given by

$$L(\boldsymbol{\lambda} \mid \mathbf{y}, \mathbf{x}, \eta_t) = \sum_{i=1}^n \left(N_i e^{f(\mathbf{x}_i, \eta_t)} - y_i f(\mathbf{x}_i, \eta_t) \right)$$

XGBoost with Poisson Loss Function: We model the rate λ_i using tree at *t*-th iteration as $\log(\lambda_i) = f(\mathbf{x}_i, \eta_t)$, which is parameterized by η_t

The objective function in XGBoost with Poisson loss function can be given by

$$L(\boldsymbol{\lambda} \mid \mathbf{y}, \mathbf{x}, \eta_t) = \sum_{i=1}^n \left(N_i e^{f(\mathbf{x}_i, \eta_t)} - y_i f(\mathbf{x}_i, \eta_t) \right)$$

We use this approach to assess the importance of the selected variables in lung cancer incidence

Results of the study

Data Science Bootcamp (Trainees)

Image: A matrix of the second seco

3) 3

Data splitting: Training data (70%) and testing data (30%)

Data Science	Bootcamp (Trainees
--------------	------------	----------

- ∢ /च 🕨 🕨

э

Hyperparameter selection:

Five-fold cross-validation on training data

Hyperparameter selection:

Five-fold cross-validation on training data

Evaluation metric: Mean Absolute Error (MAE)

Hyperparameter selection:

Five-fold cross-validation on training data

Evaluation metric: Mean Absolute Error (MAE)

Poisson GLM: Hyperparameter Tuning via Cross-Validation

3 K K 3 K April 21, 2025

Hyperparameter selection:

Five-fold cross-validation on training data

Evaluation metric: Mean Absolute Error (MAE)

Elastic Net: Selected features

Hyperparameter selection:

Five-fold cross-validation on training data

Evaluation metric: Mean Absolute Error (MAE)

Elastic Net: Selected features

Table 1: Selected Features Using Elastic Net Regularization

Features	Parameter estimates
Pct_BelowPoverty_18andOver	-1.339
Pct_Population_Male_65andOver	2.797
Pct_Population_Female_65andOver	2.743
Pct_Black_Female_65andOver	2.487
Pct_White_65andOver	0.136
Pct_White_Male_65andOver	-0.484
Pct_Hisp_65andOver	-0.885
Pct_Hisp_Female_65andOver	-1.819
BINGE_CrudePrev	-0.017
CSMOKING_CrudePrev	0.125
OBESITY_CrudePrev	0.039
Median_Household_Income	-0.087
ZCTA_pm2_5	-0.069
sdi_score	0.034
Pct_White_Male_Between18and65	1.086
Pct_White_Female_Between18and65	1.296
Pct_Black_Female_Between18and65	1.434
Pct_Hisp_Male_Between18and65	-0.328
Pct_Hisp_Female_Between18and65	-1.263

Learning rate tuning: It is tuned using cross-validation

Learning rate tuning: It is tuned using cross-validation

Evaluation metric: Mean Absolute Error (MAE)

Learning rate tuning: It is tuned using cross-validation

Evaluation metric: Mean Absolute Error (MAE)

Learning rate tuning: It is tuned using cross-validation

Evaluation metric: Mean Absolute Error (MAE)

Gain index: Feature with high gain improves the model performance

Learning rate tuning: It is tuned using cross-validation

Evaluation metric: Mean Absolute Error (MAE)

Gain index: Feature with high gain improves the model performance

Table 2: Gain-based Feature Importance

Feature	Importance
Median_Household_Income	26.08
ZCTA_pm2_5	6.787
OBESITY_CrudePrev	5.602
Pct_Population_Female_65andOver	4.88
Pct_Hisp_Female_Between18and65	4.859
CSMOKING_CrudePrev	2.414
BINGE_CrudePrev	1.775
Pct_Population_Male_65andOver	1.69
Pct_Hisp_Female_65andOver	1.47
sdi_score	1.31
Pct_White_Male_Between18and65	1.205
Pct_White_65andOver	1.193
Pct_White_Male_65andOver	1.19
Pct_Hisp_65andOver	1.166
Pct_Black_Female_Between18and65	1.122
Pct_White_Female_Between18and65	1.108
Pct_Black_Female_65andOver	1.061
Pct_Hisp_Male_Between18and65	0.992
Pct BelowPoverty 18andOver	0.399

Poisson generalized linear model

Data Science Bootcamp (Trainees)

< ■> < ■> ■ April 21, 2025

Poisson generalized linear model

Mean absolute error: 6.313

Poisson generalized linear model

Mean absolute error: 6.313

XGBoost

(b) (a) (E) (b)

Poisson generalized linear model

Mean absolute error: 6.313

XGBoost

Erdős Institute

Poisson generalized linear model

Mean absolute error: 6.313

XGBoost

Mean absolute error: 5.963

Data Science Bootcamp (Trainees)

Erdős Institute

April 21, 2025

14 / 17

2

In general, we can conlude that older Black and White seniors are positively associated with higher lung cancer counts

In general, we can conlude that older Black and White seniors are positively associated with higher lung cancer counts

Poverty and Hispanic populations show negative associations

In general, we can conlude that older Black and White seniors are positively associated with higher lung cancer counts

Poverty and Hispanic populations show negative associations

Smoking is positively associated while Income and PM2.5 are modestly negatively associated

Obesity and Smoking are also significant predictors

Obesity and Smoking are also significant predictors

Age and Race demographics have moderate importance

Obesity and Smoking are also significant predictors

Age and Race demographics have moderate importance

XGBoost improved prediction accuracy by 5.54% compared to the Poisson Generalized linear model

That concludes our presentation

Thank you for your attention!

э