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Our Dataset: the QMOF database

We use the QMOF database (Rosen et al. (2021)): ~20k theoretical MOF structures and their
DFT-derived properties.

MOF structure

®: MOF properties
-;{' .::' J K .
iy 1y @ magnetic moment
a s 4
o 2 I o R, 2 electron ener
:-ic. e -#— SMGp 2t -..’-.- " | DFT > gy

A 'y . . LN
14 :;-, (computationally expensive:
T :X‘ ~1 week / MOF) bandgap
o AR .
e . 4Ralh ( el our target

domai andard our feature set

reductions ]_—[ CStoich4D our models
— Stoich120 ]

—[ Sine Coulomb Matrix ] o
Structural (*) found to be the most predictive from early
_[ Orbital Field Matrix ] tests with PCA and linear regression.

Compositional

(computationally cheap:
~1 second / MOF)

[ Fingerprints ]




Features in the Stoich45 ‘fingerprint’

the 5 * 9 = 45 stoichiometric quantities of the form:

atomic numbers
group numbers

mean period numbers
geometric mean electronegativities
standard deviation electron affinities
The minimum of the melting points
maximum boiling _p_omts
densities

ionization energies

of the atomic elements that make up the MOF.
(The mean, geometric mean, and standard deviation are weighted by number of atoms of each type in the MOF unit cell.)

Note: these are derived only from the chemical formula of the MOF (e.g. Zn,C,,H,,O,.) and known

elemental properties that appear e.g. on the periodic table.



Feature Engineering

Total no. of features = 45

1.

2.

Principal Component Analysis: Top 8
PCs

Other approaches:
a. Random Forest - Recursive Feature
Elimination: Top 40
b. Random Forest Feature Importance: Top 30

c. Lasso (L1 regularization) for feature selection:

Top 30
Overlapping features = 23
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Top 30 Features (Random Forest)
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Choice of final feature set out of PCA and intersection dataset

Factors to consider:

- Predictive Performance: Regression
accuracy

- Computational Efficiency: Training time

and complexity.
- Interpretability

[ Final Dataset: 23 Intersection Features }

group_num_mean
roup_num_geometric_mean
foni:

PCA Features Intersection
Features
Model RMSE: 0.7684 RMSE: 0.7063
Performance R2 0.4930 R2:.0.5716
(Random
Forest)

Training Time

5.50 seconds

12.41 seconds

Top 30 Features (Random Forest)
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Modeling




Model comparison

Model Performance Compared to Baseline

Baseline Model (Mean) 1.15
OLS Linear Regression

Ridge Regression

Average Ensemble Optimization

Bayesian Ridge Regression

Pipeline (Quadratic Polynomial & Ridge Regression)
SVR

LightGBM Regressor

Random Forest Regressor

XGBoost
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Best model

XGBoost Prediction Performance

Metric Value
MSE 0.51
MAE 0.53

Baseline Mean Model MSE =1.13, MAE = 0.8 (n =2097)
~55% improvement from the baseline



Feature importance
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Conclusions

Generated feature set for training via feature engineering
Successfully trained a machine learning model to predict band gap

Room for improvement

Future work

e Use more sophisticated feature sets (/. e., structure-sensitive)
e Implement neural networks and deep learning
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