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Our Dataset: the QMOF database

We use the QMOF database (Rosen et al. (2021)): ~20k theoretical MOF structures and their 
DFT-derived properties.
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(*) found to be the most predictive from early 
tests with PCA and linear regression.
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Features in the Stoich45 ‘fingerprint’

the 5 * 9 = 45 stoichiometric quantities of the form:

The {    } of the {    } 

of the atomic elements that make up the MOF.

(The mean, geometric mean, and standard deviation are weighted by number of atoms of each type in the MOF unit cell.)

Note: these are derived only from the chemical formula of the MOF (e.g. Zn8C48H26O26) and known 
elemental properties that appear e.g. on the periodic table.
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Feature Engineering 

Total no. of features = 45

1. Principal Component Analysis: Top 8 
PCs 

2. Other approaches:
a. Random Forest - Recursive Feature 

Elimination: Top 40
b. Random Forest Feature Importance: Top 30
c. Lasso (L1 regularization) for feature selection: 

Top 30 
- Overlapping features = 23



Choice of final feature set out of PCA and intersection dataset

Factors to consider:

- Predictive Performance: Regression 
accuracy 

- Computational Efficiency: Training time 
and complexity.

- Interpretability

PCA Features Intersection 
Features

Model 
Performance 
(Random 
Forest)

RMSE: 0.7684
R²: 0.4930

RMSE: 0.7063
R²: 0.5716

Training Time 5.50 seconds 12.41 seconds

Final Dataset: 23 Intersection Features



Modeling 



Model comparison 



Best model 



Feature importance 



Conclusions 

Generated feature set for training via feature engineering

Successfully trained a machine learning model to predict band gap

Room for improvement

Future work
● Use more sophisticated feature sets (i. e., structure-sensitive)
● Implement neural networks and deep learning
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