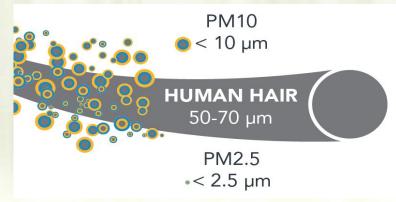
Predicting PM2.5 Risk

Bailey Forster Zoe Kearney Reeya Kumbhojkar Viraj Meruliya Braeden Reinoso

PM2.5: Overview

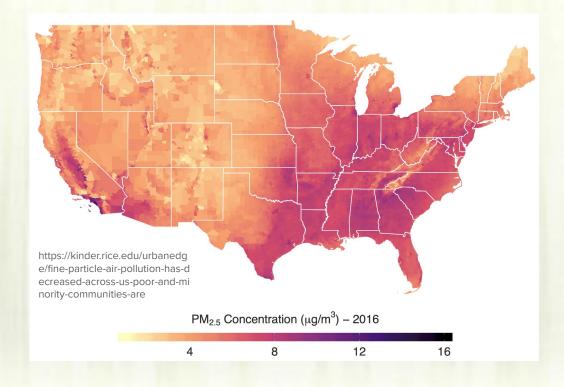
- PM2.5 = inhalable particulate matter in the air
- Risks: cancer, heart attacks, respiratory diseases, low visibility
- Main causes: construction, factories, power plants, cars, natural factors
- WHO Standard: concentration < 5 μg/m³
- EPA Standard: concentration < 9 μg/m³



https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health

PM2.5: Distribution of Risk

- Problem: PM2.5 risk is distributed highly unequally
- Previous research:
 - People of color at higher risk
 - Urbanization increases risk
 - Focus: large geographic areas (cities, counties, states)



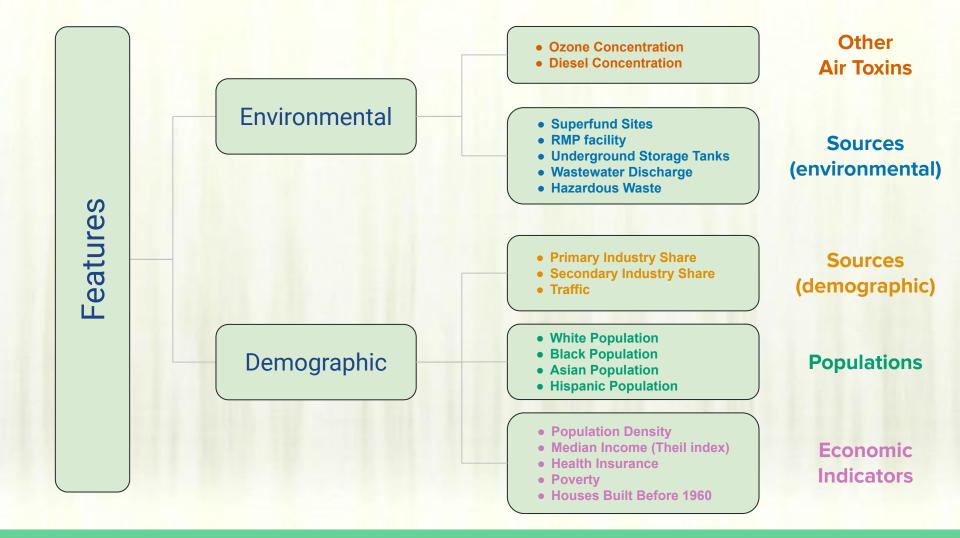
Our Project: Goals and Results

- Our Goal: Predict high-risk for urban areas based on demographic and environmental data, at the highly local (census tract) scale
- Motivations:
 - Compare sources of PM2.5 risk to make informed policy decisions
 - Understand which populations are at increased risk, and from which PM2.5 sources
 - Identify key risk predictors at highly local scale
- Results:
 - Model predicts high-risk areas with 93% accuracy
 - Identified clear patterns of risk among demographic groups and man-made sources

Data: Collection, Cleaning, and Analysis

Data Collection and Cleaning

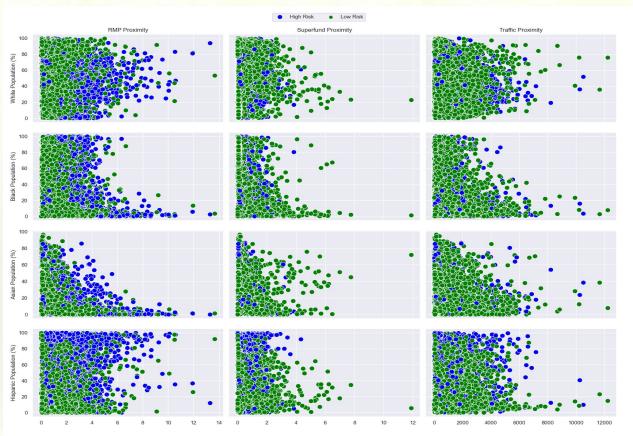
- Collected data at census tract level
 - Environmental data: U.S. Environmental Protection Agency (EPA)
 - Demographic data: U.S. Census Bureau
- Some hurdles along the way:
 - Lack of granularity in key variables
 - Missing data in rural and non-continental areas
 - Tract boundaries all data must be post-2020



Feature Comparison: Environmental vs Demographic

 High or low risk (<u>EPA</u> <u>standard</u>: PM2.5 < 9 μg/m³)

Imbalanced data: 34%
high-risk / 66% low-risk



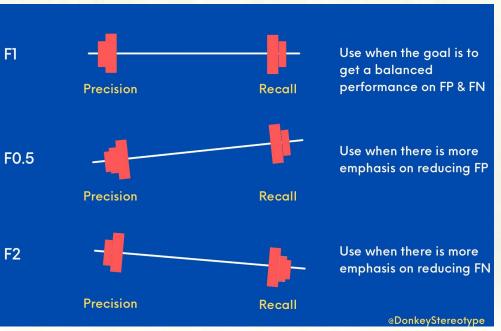
Feature Comparison: Environmental vs Demographic

Hispanic Population at more risk at high RMP proximity (PM2.5 source)

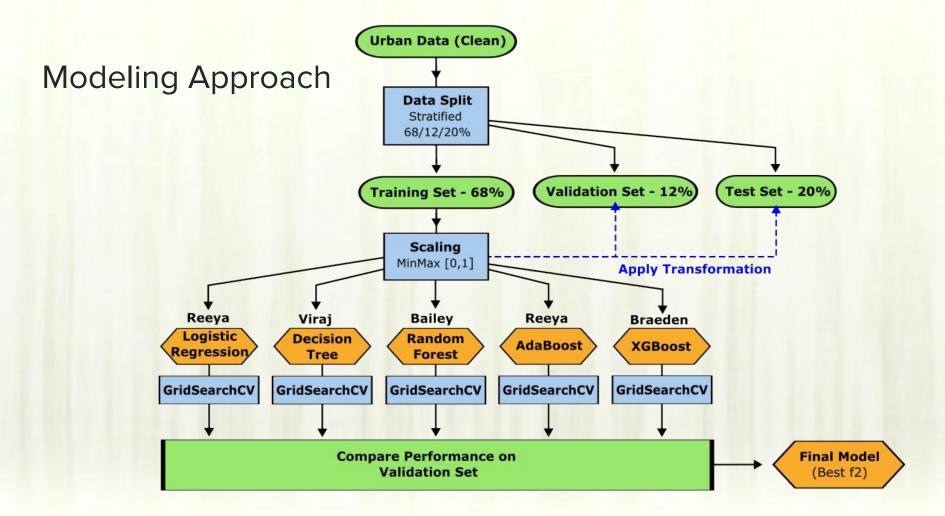
Modeling: Approach and Comparison

Modeling: Metrics and Baseline

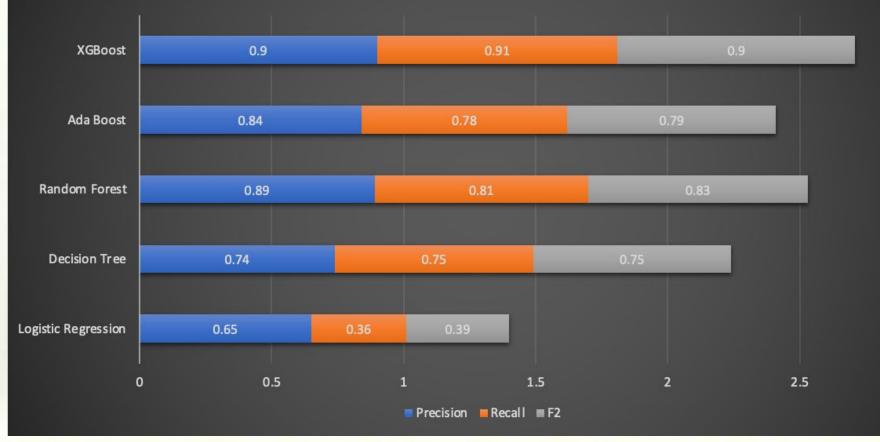
- Trade-off: <u>recall</u> (reduce false negatives) vs <u>precision</u> (reduce false positives)
- Prioritize correctly identifying high-risk areas
- Baseline model: predict all tracts as high risk
 - Perfect recall (100%) No false negatives!
 - Poor accuracy and precision (both 34%)
- Evaluation metric: f2 score



https://twitter.com/prithivida/status/1496100101877641216



Model Performance Comparision



3

Modeling: Inference and Interpretation

Modeling: XGBoost Final Model Evaluation

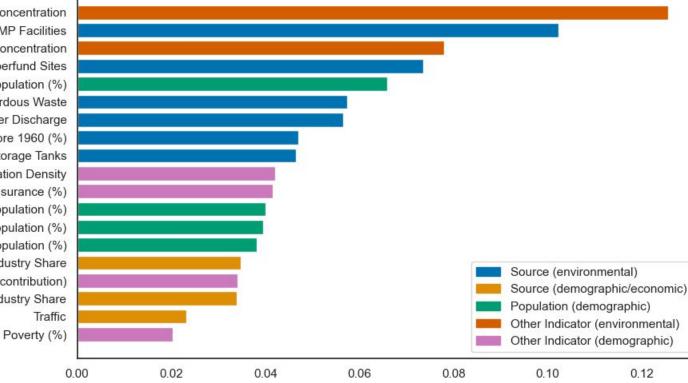
	Validation	Test	Baseline
Accuracy	93%	93%	34%
f2 Score	90%	89%	72%
Recall	91%	89%	100%
Precision	90%	91%	34%
Area under PR-curve	97%	97%	34%

Modeling: XGBoost Final Model Feature Importance

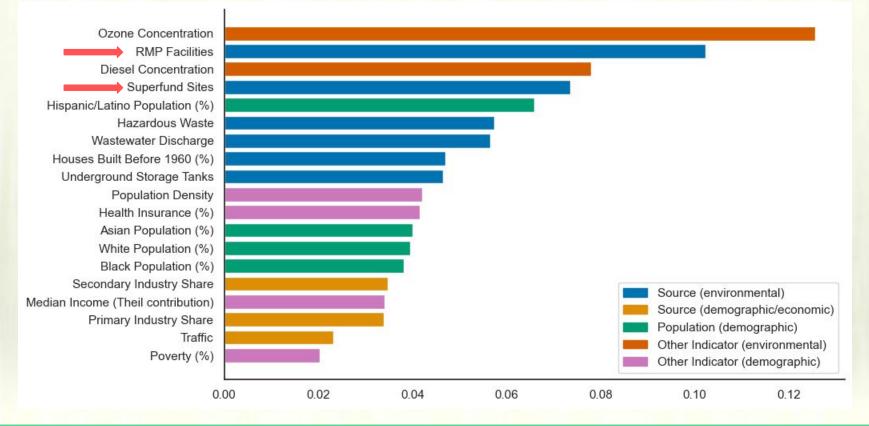
Ozone Concentration **RMP** Facilities **Diesel Concentration** Superfund Sites Hispanic/Latino Population (%) Hazardous Waste Wastewater Discharge Houses Built Before 1960 (%) Underground Storage Tanks Population Density Health Insurance (%) Asian Population (%) White Population (%) Black Population (%) Secondary Industry Share Source (environmental) Median Income (Theil contribution) Source (demographic/economic) Primary Industry Share Population (demographic) Traffic Other Indicator (environmental) Poverty (%) Other Indicator (demographic) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

High PM2.5 risk is associated with high Ozone/Diesel risk

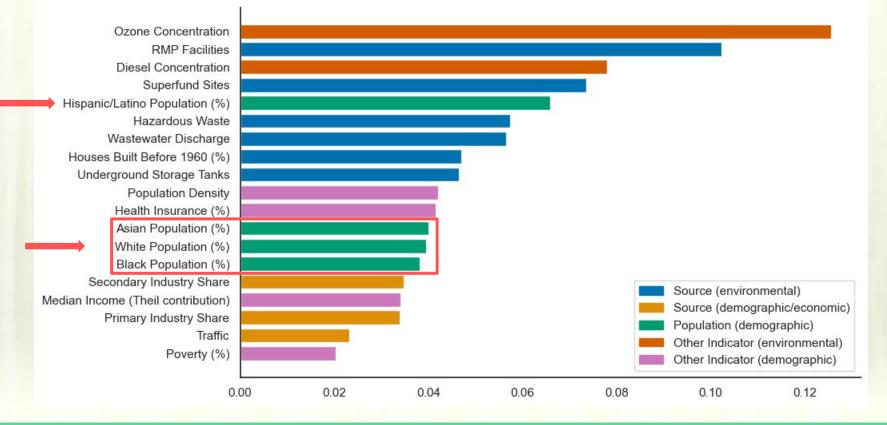
Ozone Concentration **RMP** Facilities **Diesel Concentration** Superfund Sites Hispanic/Latino Population (%) Hazardous Waste Wastewater Discharge Houses Built Before 1960 (%) Underground Storage Tanks Population Density Health Insurance (%) Asian Population (%) White Population (%) Black Population (%) Secondary Industry Share Median Income (Theil contribution) Primary Industry Share Traffic Poverty (%)



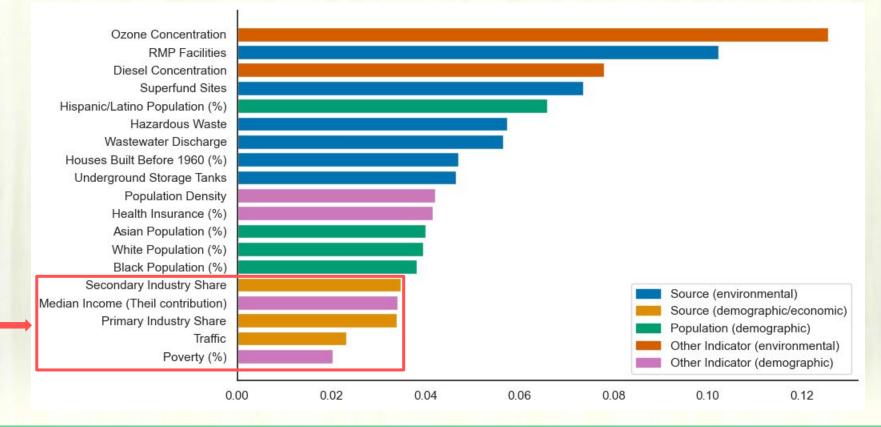
RMP and Superfund sites are the biggest sources of risk



Hispanic/Latino populations experience outsized risk



Economic factors are less predictive at a highly local scale



	Full Model	Without Ozone/Diesel	PM2.5 Sources	Demographic	Baseline
Accuracy	93%	84%	76%	67%	34%
f2 Score	89%	78%	73%	61%	72%
Recall	89%	78%	77%	64%	100%
Precision	91%	76%	61%	52%	34%
Area under PR-curve	97%	87%	75 <mark>%</mark>	60%	34%

	Full Model	Without Ozone/Diesel	PM2.5 Sources	Demographic	Baseline
Accuracy	93%	84%	76%	67 <mark>%</mark>	34%
f2 Score	89%	78%	73%	61%	72%
Recall	89%	78%	77%	64%	100%
Precision	91%	76%	61%	52%	34%
Area under PR-curve	97%	87%	75 <mark>%</mark>	60%	34%

	Full Model	Without Ozone/Diesel	PM2.5 Sources	Demographic	Baseline
Accuracy	93%	84%	76%	67 <mark>%</mark>	34%
f2 Score	89%	78%	73%	61%	72%
Recall	89%	78%	77%	64%	100%
Precision	91%	76%	61%	52%	34%
Area under PR-curve	97%	87%	75%	60%	34%

	Full Model	Without Ozone/Diesel	PM2.5 Sources	Demographic	Baseline
Accuracy	93%	84%	76%	67%	34%
f2 Score	89%	78%	73%	61%	72%
Recall	89%	78%	77%	64%	100%
Precision	91%	76%	61%	52%	34%
Area under PR-curve	97%	87%	75%	60%	34%

Wrapping Up

Summary and Future Directions

• Results:

- Binary classifier with 93% accuracy and 89% f2-score
- **New insights** into causes and distribution of PM2.5 risk
- Future directions:
 - Separate classification models for target populations
 - E.g. control for areas with high hispanic/latino populations
 - Features: PM2.5 sources and health outcomes
 - Multinomial model: low, medium, high risk based on WHO, EPA, US standards
 - Rural model: how does feature importance change?

Acknowledgements

- Thanks: Roman Holowinsky, Matt Osborne, Alec Clott, Erdös Institute.
- Thank you to our project mentor, Kenny Salau, for his support from the beginning to the completion of the project.
- Dataset Sources:
 - U.S. Environmental Protection Agency (EPA), 2023. EJScreen Technical Documentation
 - United States Census Bureau