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Motivation

~$44 billion cost to US annually [5]

Monthly mortality increases 0.04% per 
hour of power outage [1] 

Strain emergency services 

Damage to power infrastructure

Modern life runs on access to electricity!
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Challenge:
Create a reliable system to accurately predict power outages

Modeling task

Severity of power outage can be 
associated with extreme weather events

Figure: ThinkOnward, Dynamic Rhythms 
project introduction



Using weather data from the past 5 days, predict the 
maximum fraction of people without power at the 

county level tomorrow

Modeling task
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Target: County-Level maximum fraction customers without power 2014-2023

Environment for the Analysis of Geo-Located Energy 
Information (EAGLE-I) dataset

Fill missing data 

Combine yearly datasets 

Downsample to 6-hr cadence

Take maximum over each day

Modeling task
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• Begin & End Time
• Narrative
• Location*
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• Classify events
• Identify locations
• Time series
• Identify path
• Compute duration

Predictors: NOAA Extreme Weather



Predictors: ERA5-Land

cds.climate.copernicus.eu



• Temperature
• Wind Components
• Precipitation
• Snow Depth
• Wind Speed
• Cumulative 

Precipitation

Predictors: ERA5-Land



• Maximum values
• Mean values

Predictors: ERA5-Land
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Predictors: Merging & Cleaning

FIPS Datetime Percent 
Customers Out

Weather 
Events

Weather County Data

23001 2014-11-01 00:00

2014-11-01 06:00

2014-11-01 12:00

2014-11-01 18:00

2014-11-02 00:00

2014-11-02 06:00



Modelling approach

We followed the standard process when modeling multivariate time-series:Data curation

Download:
● EAGLE-I data
● NOAA weather event data
● ERA5-land weather reanalysis
● County-level shapefiles

Merging and 
downsampling

Downsample all 
temporal data to a 6-
hour cadence and merge 
by county.

Feature 
engineering

Add weather information 
from ERA5-land of 
neighbouring counties 

Compare

We compute the RMSE for 
each model at each county 
and take the mean for each 
model.

Fit and predict

Models used:
● Naive
● Linear regression
● HGBR
● XGBoost

● LSTM neural network

We fit using 5 day windows 
and forecast 1 day into the 
future.

Predictions done at county 
level, for time periods 
between 2014 and 2021.



Results on holdout sets

Nothing did much better than the Naive model!

Model RMSE

Naive 0.003122

Linear Regression 0.003547

HGBR 0.003904

XGBoost 0.004010

LSTM 0.004224



Lagging problem

Most of our models make 
predictions with a considerable lag.

LSTM

XGBoost



Observation

There is some correlation between the counties with highest RMSE and highest maximum number of 
customers out per capita. For example, for South Carolina we get a Pearson correlation coefficient of  
0.963.
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Conclusions

Conclusions:

● Our features as used are not very predictive of our target
● Limited by the sparsity of certain weather events in training data 
● Perform much better on certain regions
● Predictions tend to lag reality 

Main product: large aggregated + engineered dataset 



Conclusions

Limitations:

● Predictions are by county, more granular might be more useful
● Models don’t capture long term trends like climate change 

Future work:

● Taking geographic relationships into account in a more sophisticated way
● Training a model to predict farther into the future 

Main product: large aggregated + engineered dataset 
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