

Modern life runs on access to electricity!

Outages impact livelihoods + the economy:

Heatmap of US outages 2018-21 [8]

Modern life runs on access to electricity!

Outages impact livelihoods + the economy:

~\$44 billion cost to US annually [5]

Heatmap of US outages 2018-21 [8]

Modern life runs on access to electricity!

Outages impact livelihoods + the economy:

~\$44 billion cost to US annually [5]

Monthly mortality increases 0.04% per hour of power outage ^[1]

Heatmap of US outages 2018-21 [8]

Modern life runs on access to electricity!

Outages impact livelihoods + the economy:

~\$44 billion cost to US annually [5]

Monthly mortality increases 0.04% per hour of power outage ^[1]

Strain emergency services

Heatmap of US outages 2018-21 [8]

Modern life runs on access to electricity!

Outages impact livelihoods + the economy:

~\$44 billion cost to US annually [5]

Monthly mortality increases 0.04% per hour of power outage ^[1]

Strain emergency services

Damage to power infrastructure

Heatmap of US outages 2018-21 [8]

Challenge:

Create a reliable system to accurately predict power outages

Severity of power outage can be associated with extreme weather events

Figure: ThinkOnward, Dynamic Rhythms project introduction

Using weather data from the past 5 days, predict the maximum fraction of people without power at the county level tomorrow

Target: County-Level maximum fraction customers without power 2014-2023

Target: County-Level maximum fraction customers without power 2014-2023

Environment for the Analysis of Geo-Located Energy Information (EAGLE-I) dataset

Target: County-Level maximum fraction customers without power 2014-2023

Environment for the Analysis of Geo-Located Energy

Information (EAGLE-I) dataset

Fill missing data

Combine yearly datasets

Downsample to 6-hr cadence

Take maximum over each day

Census Shapefiles

- Census Shapefiles
- EIA Power Grid

- Census Shapefiles
- EIA Power Grid
- FEMA Pop & Area

- Census Shapefiles
- EIA Power Grid
- FEMA Pop & Area
- SDC Buried Lines

Predictors: NOAA Extreme Weather

- Begin & End Time
- Narrative
- Location*

Predictors: NOAA Extreme Weather

- Classify events
- Identify locations
- Time series

Predictors: NOAA Extreme Weather

- Classify events
- Identify locations
- Time series
- Identify path
- Compute duration

Predictors: ERA5-Land

Predictors: ERA5-Land

Temperature
Wind Components
Precipitation
Snow Depth
Wind Speed
Cumulative
Precipitation

Predictors: ERA5-Land

- Maximum values
- Mean values

Predictors: Merging & Cleaning

Predictors: Merging & Cleaning

FIPS	Datetime	Percent Customers Out	Weather Events	Weather	County Data
23001	2014-11-01 00:00				
	2014-11-01 06:00				
	2014-11-01 12:00				
	2014-11-01 18:00				
	2014-11-02 00:00				
	2014-11-02 06:00				

Modelling approach

Merging and **Feature** Fit and predict Data curation Compare downsampling engineering Models used: Download: Downsample all Add weather information We compute the RMSE for Naive FAGI F-I data from FRA5-land of each model at each county temporal data to a 6-NOAA weather event data • Linear regression hour cadence and merge neighbouring counties and take the mean for each ERA5-land weather reanalysis HGBR model. by county. • County-level shapefiles XGBoost LSTM neural network SKTIME We fit using 5 day windows TensorFlow and forecast 1 day into the future. Predictions done at county level, for time periods between 2014 and 2021.

Results on holdout sets

Model	RMSE
Naive	0.003122
Linear Regression	0.003547
HGBR	0.003904
XGBoost	0.004010
LSTM	0.004224

Nothing did much better than the Naive model!

Lagging problem

Most of our models make predictions with a considerable lag.

True Values - 28015
Predicted Values - 28015

Observation

There is some correlation between the counties with highest RMSE and highest maximum number of customers out per capita. For example, for South Carolina we get a Pearson correlation coefficient of 0.963.

Main product: large aggregated + engineered dataset

datetime	fips_code	customers_out	neighbors	event_count Flood	event_count Storm	event_count Hurricane	event_count Heat	event_count Fire	event_count Wind	wind_speed	sf_12h	tp_24h	t2m	sf	tp
2014-01-11 12:00:00	1001	0.0	[1051, 1085, 1101, 1047, 1021]	0.0	0.0	0.0	0.0	0.0	0.0	5.176102	0.0	0.021837	290.679993	0.0	0.013920
2014-01-11 18:00:00	1001	0.0	[1051, 1085, 1101, 1047, 1021]	0.0	0.0	0.0	0.0	0.0	0.0	4.015108	0.0	0.044741	290.501953	0.0	0.023462
2014-01-12 00:00:00	1001	0.0	[1051, 1085, 1101, 1047, 1021]	0.0	0.0	0.0	0.0	0.0	0.0	4.130178	0.0	0.066655	286.847900	0.0	0.023462
2014-01-12 06:00:00	1001	0.0	[1051, 1085, 1101, 1047, 1021]	0.0	0.0	0.0	0.0	0.0	0.0	2.145273	0.0	0.060844	280.688232	0.0	0.000000
2014-01-12 12:00:00	1001	0.0	[1051, 1085, 1101, 1047, 1021]	0.0	0.0	0.0	0.0	0.0	0.0	1.697687	0.0	0.046925	276.928711	0.0	0.000001

Main product: large aggregated + engineered dataset

Main product: large aggregated + engineered dataset

- Our features as used are not very predictive of our target
 - Feature engineering proved ineffective

Main product: large aggregated + engineered dataset

- Our features as used are not very predictive of our target
- Limited by the sparsity of certain weather events in training data

datetime	TIPS_CODE	customers_out	neignbors	Flood	Storm	iurricane	Heat	Fire	Wind	wina_speea	ST_12N	τp_24n	τzm	ST	тр
2014-01-11 12:00:00	1001	0.0	[1051, 1085, 1101, 1047, 1021]	0.0	0.0	0.0	0.0	0.0	0.0	5.176102	0.0	0.021837	290.679993	0.0	0.013920
2014-01-11 18:00:00	1001	0.0	[1051, 1025, 1101, 047, 1021]	0.0	0.0 V orv	0.0	0.0	0.0	0.0	4.015108	0.0	0.044741	290.501953	0.0	0.023462
2014-01-12 00:00:00	1001	0.0	[10,1, 1085, 1101, 1047, 1021]	0.0	0.0	spars 。。	0.0	0.0	0.0	4.1. 0178	0.0	0.066655	286.847900	0.0	0.023462
2014-01-12 06:00:00	1001	0.0	[105], 1085, 1101, 1047, 1081]	0.0	0.0	0.0	0.0	0.0	0.0	2.145273	0.0	0.060844	280.688232	0.0	0.000000
2014-01-12	1001	0.0	[1051, 1085, 1101, 1047,	0.0	0.0	0.0	0.0	0.0	0.0	1.697687	0.0	0.046925	276.928711	0.0	0.000001

Main product: large aggregated + engineered dataset

- Our features as used are not very predictive of our target
- Limited by the sparsity of certain weather events in training data
- Perform much better on certain regions

Main product: large aggregated + engineered dataset

- Our features as used are not very predictive of our target
- Limited by the sparsity of certain weather events in training data
- Perform much better on certain regions
- Predictions tend to lag reality

Main product: large aggregated + engineered dataset

Limitations:

- Predictions are by county, more granular might be more useful
- Models don't capture long term trends like climate change

Future work:

- Taking geographic relationships into account in a more sophisticated way
- Training a model to predict farther into the future

Works Cited

- (1) Ai, Dan and Crago, Christine and Mullins, Jamie, Heat, Power Outages and Mortality in the United States. April 10, 2025. Available at SSRN: https://ssrn.com/abstract=5212367 or http://dx.doi.org/10.2139/ssrn.5212367
- (2) Brelsford, C., Tennille, S., Myers, A., Chinthavali, S., Tansakul, V., Denman, M., Coletti, M., Grant, J., Lee, S., Allen, K., Johnson, E., Huihui, J., Hamaker, A., Newby, S., Medlen, K., Maguire, D., Dunivan Stahl, C., Moehl, J., Redmond, D. P., ... Bhaduri, B. (2023). The Environment for Analysis of Geo-Located Energy Information's Recorded Electricity Outages 2014-2023 (Version 2). figshare. https://doi.org/10.6084/m9.figshare.24237376.v2
- (3) Copernicus Climate Change Service (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed on 07-MAR-2023)
- (4) Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2018): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47, (Accessed on 07-MAR-2023)
- (5) LaCommare, K.H., Eto, J.H., Dunn, L.N., Sohn, M.D., 2018. Improving the estimated cost of sustained power interruptions to electricity customers. Energy 153, 1038–1047. doi: 10.1016/j.energy.2018.04.082.
- (6) National Centers for Environmental Information (NCEI). (2024). Storm Events Database. NOAA National Centers for Environmental Information. Retrieved from https://www.ncdc.noaa.gov/stormevents/
- (7) Satterlee, Katie. Feb. 2024. *Predicting Power Outages*. Texas A&M University. https://engineering.tamu.edu/news/2024/02/predicting-power-outages.html
- (8) Woods, Alden. May 2, 2023. These four regions of the US are hardest hit by power outages. https://deohs.washington.edu/hsm-blog/these-four-regions-us-are-hardest-hit-power-outages

