

The Silent Emergency

Predicting Preterm Birth

$\bullet \bullet \bullet$

Katherine Grillaert, Divya Joshi, Noah Rahman, Alexander Sutherland, and Kristina Zvolanek

"The world is facing a silent emergency ... of preterm births." - UNICEF

10% of US births are $preterm^1$

Risk of death and long-term negative health consequences²

Preterm birth results from complex interactions²:

- environmental
- biological
- genetic
- behavioral

Current medical efforts focus more on responsive rather than preventative care³

Hamilton BE, Martin JA, Osterman MJK. Births: Provisional data for 2022. Vital Statistics Rapid Release; no 28. Hyattsville, MD: National Center for Health Statistics. June 2023. DOI: https://dx.doi.org/10.15620/cdc:127052

Predictive Modeling for Preterm Births

Current gap: Preterm birth is hard to predict!

Predictive models: Could support early and accessible diagnosis³

Previous literature: Limited representation in training datasets⁴

Goals of Our Predictive Models:

- Use electronic health records data, specifically social determinants of health associated with preterm birth
- Ensure model's equitable performance across race and ethnicity

Key Stakeholders

Care Receivers Pregnant individuals Prospective parents **Care Givers** Medical professionals Family and friends

Care Facilitators Hospital systems Insurance companies

Data Source

NIH All of Us research program:

- Controlled tier of data
- Restricted access
- All data is anonymized

Data origins:

- Electronic health records
- Surveys

Trained Models on Two Datasets

Demographics

Health & Lifestyle

Response Variable and Baseline Model

Response variable: binary classes-

0: Normal birth1: Preterm birth

Baseline model: weighted coin flip Probability of outcome equal to fraction of preterm birth in dataset

Key Performance Indicators (KPIs)

Chose to minimize false negatives and accept more false positives

KPIs for evaluating the model:

KPIs for evaluating fairness across demographic groups:

Statistical Parity Difference (SPD)

Equalized Odds

Demographic Model: Workflow

Data from All of Us

All singleton preterm or normal births between 2009-2022

Data Cleaning

Calculate exact gestational age

Feature cleaning, engineering, and one-hot encoding

Feature Standard Scaling

Final Dataset *n* = 13690 births

Zip Code Level Features

- Median income
- High school education rate
- Assisted income rate
- Health insurance rate
- Poverty rate
- Deprivation index

Individual Features

- Age
- Race
- Ethnicity
- Birth Number

Run Model with

Demographic Models: Exploratory Data Analysis

Demographic Models: Results

Models explored:

- AdaBoost Decision Tree (n=50)
- SVC with class weights (0: 1, 1: 5.75)

Best results: SVC with class weights

Challenges:

- Primarily zip code level data
- Over 6x more term births than preterm births

* *The SPD metrics of predictions mirrored training dataset disparities.*

Key Performance Indicators:

	Best Model	Baseline
Recall	0.413	0.145
F1	0.242	0.137
PR-AUC	0.172	0.192
SPD	*	
Eq. Odds	0.0	

Demographic Models: Results

Demographic Models: Statistical Parity Difference (SPD)

Racial/Ethnic Group (privileged group: White)	'Ground Truth' Entire Dataset	Test Predictions
Black or African American	-0.071	-0.065
Asian	0.003	0.000
Middle Eastern or North African	0.063	0.021
Native Hawaiian or Other Pacific Islander	0.003	-0.042
More than one	-0.047	-0.073
None of these	-0.004	0.041
No answer	-0.006	-0.007

Health and Lifestyle Model: Workflow

Data from All of Us

All singleton preterm or normal births between 2011-2022

Data Cleaning

Calculate exact gestational age

Feature cleaning, engineering, and one-hot encoding

Feature Standard Scaling **Final Dataset** *n = 8771 births*

Individual Features

- Age
- Body Mass Index (BMI)
- Drinking
- Frequency
- Binge drinking
- Smoking status
- Mental health disorders
 - Anxiety
 - Depression
 - Other
- Drug abuse
- Diabetes
 - Type 1
 - Type 2
 - Type unknown

Health and Lifestyle Models: Exploratory Data Analysis

Health and Lifestyle Models: Results

Models explored:

- Logistic regression with class weights (0: 1, 1: 6.33)
- Logistic regression with ROSE (Random Over-Sampling Examples) oversampling
- SVC with class weights (0: 1, 1: 6.33)

Best results: Logistic regression with class weights

Challenges:

- Over 6x more term births than preterm births
- Features not necessarily representative of status during pregnancy

* The SPD metrics of predictions mirrored training dataset disparities.

Key Performance Indicators:

	Best Model	Baseline
Recall	0.473	0.137
F1	0.247	0.136
PR-AUC	0.197	0.196
SPD	*	
Eq. Odds	0.0	

Health and Lifestyle Models: Results

Health and Lifestyle Models: Statistical Parity Difference (SPD)

Racial/Ethnic Group (privileged group: White)	'Ground Truth' Entire Dataset	Test Predictions
Black or African American	-0.081	-0.103
Asian	-0.007	-0.053
Middle Eastern or North African	0.042	0.107
Native Hawaiian or Other Pacific Islander	-0.026	-0.226
More than one	-0.057	-0.026
None of these	-0.049	-0.179
No answer	-0.018	-0.032

Conclusions and Next Steps

Our models met, but did not outperform, the baseline models.

• A previous study using EHR data only had similar recall and precision values⁵

Challenges:

- Individual predictions are limited when input data is on the community level
- Highly imbalanced class structure not easily fixed by oversampling methods
- Complexity of preterm birth may require features from multiple domains²

Future Work:

- High quality, individual level data collection needed
- Incorporate features from demographics, health records, genetics
- Engineer interaction terms, empowered by a robust dataset

Thanks to...

- Roman Holowinsky, Matt Osborne, Alec Clott, and The Erdős Institute for their support during this boot camp
- Evelyn Huszar for her mentorship and advice on this project
- The NIH *All of Us* program for collecting, anonymizing, and allowing us to use the data for this project:

The All of Us Research Program is supported by the National Institutes of Health, Office of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA #: AOD 16037; Federally Qualified Health Centers: HHSN 263201600085U; Data and Research Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24 OD023176; Participant Technology Systems Center: 1 U24 OD023163; Communications and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2 OD025337; 1 OT2 OD025276. In addition, the All of Us Research Program would not be possible without the partnership of its participants.

References

- 1. Centers for Disease Control and Prevention. (2023, October 24). Preterm birth. Centers for Disease Control and Prevention. https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm.
- 2. Goldenberg RL, Culhane JF, Iams JD, and Romero R. Epidemiology and causes of preterm birth. The Lancet. 2008; 371(9606):75–84. doi: 10.1016/S0140-6736(08)60074-4.
- 3. Włodarczyk T, Płotka S, Szczepański T, Rokita P, Sochacki-Wójcicka N, Wójcicki J, et al. Machine Learning Methods for Preterm Birth Prediction: A Review. Electronics. 2021; 10(5): 586. doi: 10.3390/electronics10050586.
- 4. Bonevski B, Randell M, Paul C, Chapman K, Twyman L, Bryant J, et al. Reaching the hard-to-reach: a systematic review of strategies for improving health and medical research with socially disadvantaged groups. BMC Med Res Methodol. 2014; 14:42. doi: 10.1186/1471-2288-14-42.
- 5. Mercer BM, Goldenberg RL, Das A, Moawad AH, Iams JD, Meis PJ, et al. The preterm prediction study: a clinical risk assessment system. Am J Obstet Gynecol. 1996; 174(6):1885-95. doi: 10.1016/s0002-9378(96)70225-9.