
Automated Road Network Extraction and Route Travel Time Estimation from Satellite Imagery

Data prep:

AOI_7_Moscow: total length: 2252.3 km, 1353 chip tiff files AOI_8_Mumbai: total length: 1391.6 km, 1016 chip tiff files

Tiff file: PS-MS: 1300*1300*8 files, PAN: 1300*1300*1 files Pan-sharpenned 8-channel multispectral image with value 0~2000+ Panchromatic image

We stored the 9 channels of one chip image into 3 png files, as shown below.

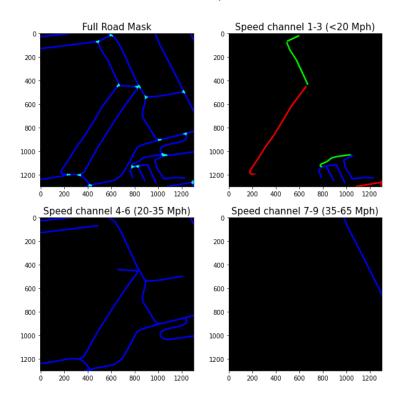
Moscow chip 178

1000 1200

1000 1200

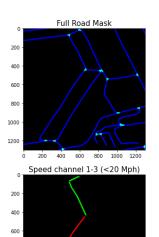
Speed mask creation

The roads length, coordinates and travel time data are stored in csv files.


df_simp[(df_simp['ImageId']=='SN5_roads_train_A0I_7_Moscow_chip1300')][:5]

	Imageld	WKT_Pix	length_m	travel_time_s	speed
8593	SN5_roads_train_AOI_7_Moscow_chip1300	LINESTRING (1218.921328015625 499.127116709947	59.492	2.957329	45.0
8594	SN5_roads_train_AOI_7_Moscow_chip1300	LINESTRING (1295.024837473407 1264.24377623200	12.418	1.388914	20.0
8595	SN5_roads_train_AOI_7_Moscow_chip1300	LINESTRING (1078.604571962729 1299.99495349079	44.062	4.928194	20.0
8596	SN5_roads_train_AOI_7_Moscow_chip1300	LINESTRING (1299.994953490794 1246.84674017503	6.326	0.707543	20.0
8597	SN5_roads_train_AOI_7_Moscow_chip1300	LINESTRING (1062.504190951586 1033.84425793215	47.759	4.273354	25.0

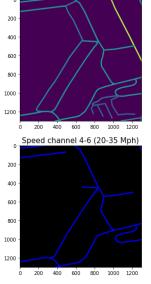
WKT_Pix to geometrical shapes:

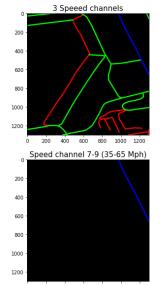

We extracted these road information and draw them on corresponding chips to creat the speed masks

Moscow chip 1300

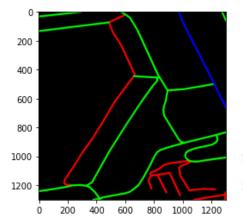
Moscow chip 1300

Continuous speed

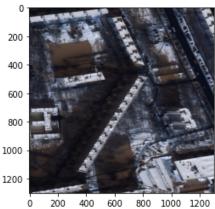

800 -

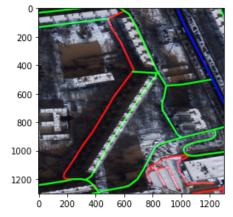

1000

1200


0 200

400 600


0 200 400 600 800 1000 1200



1000

1200

800

Image Augmentation

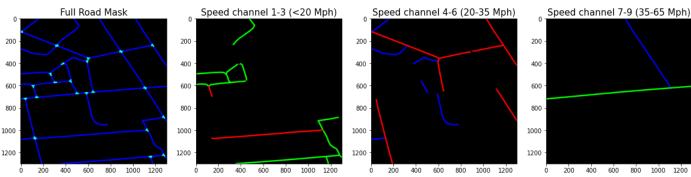
Before feeding the images and masks to the machine learning models, we did some image augmentation operations:

Shift, rotate, crop, gaussian noise, contrast/ brightness/ saturation....

Modeling

11 channels: full road shape, 9 speed channels, 1 continuous speed channel

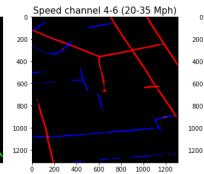
400 600 800 1000 1200

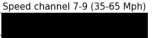

Combo loss with different weights:

- 1 Dice + 3 Focal for road mask •
- Cross Entropy for speed mask •
- MSE for continuous speed mask

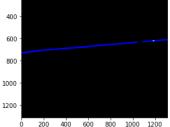
Ensembled 8 pretrained models and trained on our dataset:

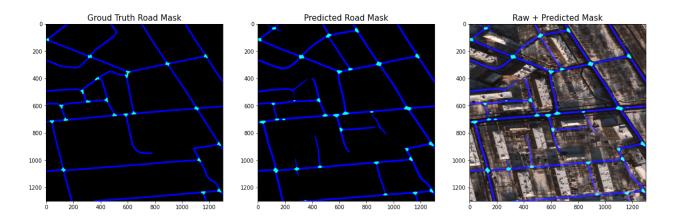
- 4 ResNet50 + Unet •
- 4 SeResNeXt + Unet •


Predictions



Ground Truth (Moscow test chip 1160)


Full Road Mask Speed channel 1-3 (<20 Mph) 0 0 200 200 400 400 600 600 800 800 1000 1000 1200 1200 200 400 600 800 1000 1200 200 ń


Predicted Masks (Moscow test chip 1160)

0

Metrics Evaluation

Dice score

Road mask: 0.68 Speed channel 1-3 : 0.39 Speed channel 4-6: 0.46 Speed channel 7-9: 0.60

Implications and Future

- Dataset with better annotation will improve the training models
- Include other released SpaceNet dataset in training could improve our models
- Tune the losses function weight to enhance predictions for speed channels
- Try various encoder structures for Unet backbone