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5-Year
Relative Survival

3.8%

MR

2013-2019

= Adapted from:
https://seer.cancer.gov/statfacts/html/brain.html


https://seer.cancer.gov/statfacts/html/brain.html
https://seer.cancer.gov/statfacts/html/brain.html

100,000

AMERICANS
are living with a primary brain tumor

94,390

AMERICANS
will receive a primary brain tumor diagnosis in 2023

18,990

AMERICANS
will die from a malignant brain tumor in 2023

— Adapted from:
O https://braintumor.org/brain-tumors/about-brain-

tumors/brain-tumor-facts


https://seer.cancer.gov/statfacts/html/brain.html

kaggle

Axial Coronal Sagittal

DATA

e Data was taken from
https://www.kaggle.com/datasets/sartajbhu
vaji/brain-tumor-classification-mri

e |t consists of a series of MRI brain scans
from patients with a glioma tumor, a
meningioma tumor, a pituitary tumor, or no
tumor

e The training set consists of 2870 images

Meningioma

: : Glioma
and the test set consists of 394 images
e The data consists of a mix of coronal,
sagittal, and axial images
Sagittal plane
Coronal plane P|tu|tary
Axial plane
o>

. Badza and Barjaktarovié. (2020). Appl. Sci., 10(6), 1999

g1 77077T


https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://sciprofiles.com/profile/951379
https://sciprofiles.com/profile/340061
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GOALS AND OBJECTIVES

Can we classify brain If so, can we accurately classify among four Could we establish
tumors using MRI data? classes: glioma, pituitary, meningioma, and which model holds
-Benign or malignant no-tumor control? higher precision, recall,

and accuracy?




ALEXNET

Model architecture:

e The AlexNet Architecture was first
proposed by Krishevsky, Sutskever, &
Hinton in 2017

e |t consists of five 2D Convolutional

Layers, each with a Max Pooling layer in

between, and followed by three fully

connected layers

Input data Convl Conv2 Conv3 Conv4 Conv5s FC6 FC7 FC8

/ 13x 13 x 384 13x 13 x 384 13% 13 X 256

27x% 27 % 256

55x 55 x 96

1000

227% 227 X 3 4096 4096

Krizhevsky, A.; Sutskever, |.; Hinton, G.E. ImageNet classification with deep convolutional
neural networks. Adv. Neural Inf. Process. Syst. (NIPS) 2012, 25, 1097-1105.




ALEXNET

Model specifics:

Loss function defined as Categorical Cross Entropy.
Used Stochastic Gradient Descent as the optimizer
with a learning rate of 0.001.

Considered accuracy, precision, and recall metrics.
Trained across 25 epochs.




EVALUATION: ALEXNET
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The maximum accuracy score on the validation set is 93.9%



WHY DID WE CHOOSE:
EFFICIENTNET V2?2 .

EffNetV2-XL(21k) )

We can use transfer learning to use the < 6 } .
3 o p
i i i i s | [ , @ e=mm=m————TTT NFNet-F4
weights of this efficient convolutional : - NatVo.L ##,,.-;3 |
neural network that has been trained on < e wWiTL/16(21k)
T oar #_ _ EffNet-B7
24M parameters. & 85 _ -7 Fa FMNeCBTleprg) ;
[ lambdanet botnet e
B oMl —==="" EfiNet-B7
c ResNet-RS e
& ="
£ 841 ) _emT B8
é g
FO ) JRe B5
7’
83 1 g
B4 . . . . .
1 2 3 4 5 6
Training time (TPU days)
— (a) Training efficiency.
- ™\
EfficientNet ResNet-RS DeiT/ViT {EfﬁcientNetVZ\
(2019) (2021) (2021) (ours)
Top-1 Acc. 84.3% 84.0% 83.1% 83.9%
Parameters 43M 164M 86M \\ 24M /L

(b) Parameter efficiency.

Mingxing Tan and Quoc V. Le (2021). "EfficientNetV2: Smaller Models and Faster Training", ICML




WHY DID WE CHOOSE:
EFFICIENTNET V2?

We can use transfer learning to use the
weights of this efficient convolutional

neural network that has been trained on Tune hyperparameters:

-Loss function: categorical
24M parameters. J
cross entropy
-Learning rate: 0.001-

Data collection and
data augmentation.

0.005,
-Optimizers: SGD and
Image rotation and Define model and train Adam
translation, prevents model on Google Colab -Epochs: 5 ->10 -> 25
overfitting and Pro using a T4 GPU.
increases performance.
Evaluate model metrics: ST E P 3
accuracy, precision, and
. STEP 1 recall.
STEP 2




EVALUATION: EFFICIENTNET V2
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Maximum accuracy on the validation dataset was: 90.18%, whereas the
precision and the recall were: 67.31% and 98.60%, respectively.
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FUTURE DIRECTIONS

©

A clinician friendly, real time
and cost saving way for
radiologist and MRI
technologists to assist in
diagnosis

‘\. -

Testing and validation on an
larger more diverse Imaging
data set

Further optimization and
refinement of model to
improve precision

LARGER MODEL

IMPLEMENTION ENHANCEMENT

/ DATASET
6

1
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jgloe/
MRI_Classification

Erdos Institute Group Project about classifying
various brain tumors using MRI scans.
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