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Hematopoietic Stem Cell Transplant (HCT)

e Also called bone marrow transplant.
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e Key treatment for blood cancers.
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patients after HCT.

o Data: CIBMTR via kaggle.com

Figure: Hematopoietic stem cells in
bone marrow produce all blood cells.




Challenge: Censored Data

e Problem: Many patients exit study before an event (death or relapse)

o Censored observations. True survival time not known.

e Requires specialized methods from survival analysis.
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EDA

® The dataset dimensionality: 58 feature columns and 2 target columns.
e Target columns:
o efs (event-free survival): whether an adverse event has occurred (1 or 0).

o efs_time (event-free survival time): event-free survival time in months.
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Stratified Concordance Score (SC-Index)

e There is a strong correlation between survival rates and the race group:
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e These survival discrepancies are the reason why it is preferred to compute a metric
called stratified concordance index, along the race group.




Data Preprocessing / Imputation
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Downstream modeling

Challenge: Missing features in the test set

KNN Imputer: Data imputation based on k-nearest neighbors.



Target quantities

Target quantities:

e Hazard rate: measure the risk that an event (death) happens to a patient
e Expected survival time: measure the expected time a patient lives

Sample models: 10000

8000

e Cox proportional hazard model (CoxPH)
e accelerated failure time model (AFT)
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Model Training

CoxPH
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LIl IBETE KNN imputer CatBoost

Random Forest

Preprocessed Testing l
Data

) Prediction




Results

Stakeholder Metric: Stratified Concordance Index (SC-index)
- Similar to AUC, SC-index is between (0, 1). 1 means perfect prediction.

Baseline (CoxPH): 0.6507 Kaggle Winner: 0.7012
Fine-tuned Models | CoxPH XGboost Survival Random Forest | CatBoost
Performance 0.6523 0.6533 0.6340 0.6578

CV 80%

Performance 0.6532 0.6545 0.6334 0.6581

Test Set 20%

We select the tuned CoxPH model to be our final solution.

- The coefficients of CoxPH directly explains the effect of each feature on the risk.
D



Conclusion

Clinical impact: Our analysis reveals key features linked to post-HCT outcomes, which may assist
physicians in risk stratification and treatment planning.

Top 5 significant features

dri_score_Intermediate -0.4185_
comorbidity_score 1 .0.0631
conditioning_intensity_nan - -0.6076_
dri_score_N/A - pediatric - -0.3427_
conditioning_intensity RIC -0.2300
-0.8 —6.4 0.'0 0.l4 0.8

Effect on the risk (log of hazard)

Model performance: A SC-Index of 0.653 suggests the model effectively captures survival patterns
despite data complexity. Robust preprocessing and survival modeling enhance interpretability and
utility.

Future directions: Explore deep learning-based survival models to boost accuracy.
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Thank you for listening!


https://kaggle.com/competitions/equity-post-HCT-survival-predictions

(Bonus) EDA: HLA Features

e One of the most important groups of numerical features in the set are HLA features (17). HLA (Human

Leukocyte Antigen) is a set of proteins found on the surface of cells that help the immune system identify
foreign invaders.

e |In bone marrow or stem cell transplants it’s critical for the donor and recipient to have a good match in their
HLA markers.

e The HLA features are very correlated:

Spearman Correlation Matrix for a selection of HLA markers
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(Bonus) Score function and Concordance index (C-index)
Score function: assign a score to each sample. A high score means a low survival
time. (For example 100 / survival time (weeks) ).

The C-index assesses the proportion of pairs of subjects where the model's
predicted risk scores align with the observed event times.

T: survival time, n: estimated score, d: indicator of censored data

Zi,j 11«71, * 1>y, XJ
Zi,j 1T;<T.- "Sj

C-index =




(Bonus) C-index Example

T Censored(0)

Patient 1. 20 1
Patient 2: 30 1
Patient 3: 10 0]
Patient 4. 40 0

> i 1<t - Inon, - 6
Zi,j lpyer, - J

C-index =

Concordant pairs (ordered)
(2,1) (3.1) (4)

(1,2) (3,2) (4,2)

Ti > Tj concordant pairs
(2,9) (4.1)

(4,2)

Perfect scores: nd > n2 > n1



(Bonus) More on Censored Data

Right-censored: true survival time

Outcome variable: Time until an
event occurs

Censoring: we don’t know
survival time exactly.
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(Bonus) More on Target quantities

Survival function models the probability that the patient lives longer the time t:

S(t) = P(T > t)
Hazard function describes the intensity that the patient dies at the next instant,
assuming the patient has lived for time t:
S'(¢)
ht) = — =L
5(t)
With these quantities, suitable candidates for risk scores include expected survival
time or the value of the hazard function.



(Bonus) More on CPH and AFT

Cox proportional hazard model (CPH): Assume the ratio of the hazards is

A(t; X)  exp(X-f)
h(t; X') ~ exp (X' )

Accelerated failure time model (AFT):

log— Zﬂz(x X;)

CPH models the ratio of the hazard furfetions, while AFT models the log ratio of the
survival times. Using machine learning techniques, we estimate the optimal ,3




