Atari-HEAD Game images and decision-making prediction

Team Apollo Nicole Basinski, Danny Wan, Jason Xing, Nydia Chang

Overview

Problem:

It is hard to get quantifiable information on players' decision-making process in video games. Information on decision making is limited to player input into a controller. This gives us no information from players before they make an input.

Solution:

Team Apollo created a model that utilizes a player's gaze positions and video game frames to predict their actions. This gives us measurable data on players' decision-making process.

Stakeholders:

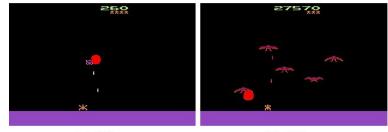
Game developers that want to create more engaging video games.

What this is?

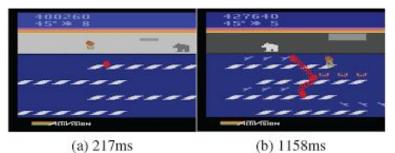
Atari Human Eye-Tracking And Demonstration Dataset (Atari-HEAD)

- Provides information about human decision-making strategies
 - Gaze information human motivation behind actions and the anticipated rewards

http://ai.stanford.edu/~zharu/publications/


Semi-frame-by-frame game playing

Game pauses until action


Allows multiple eye movements per frame

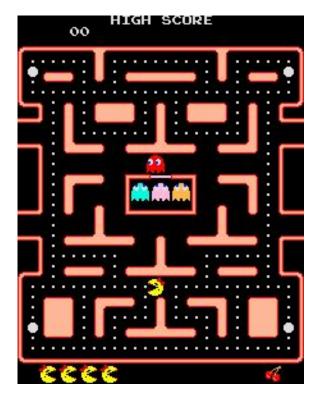
- Reduces inattentional blindness
- Allows sophisticated planning
- Allows enough decision time in order to obtain near-optimal decisions

(a) 250ms

(b) 1200ms

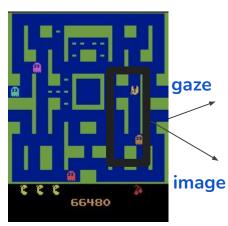
Data selection for training

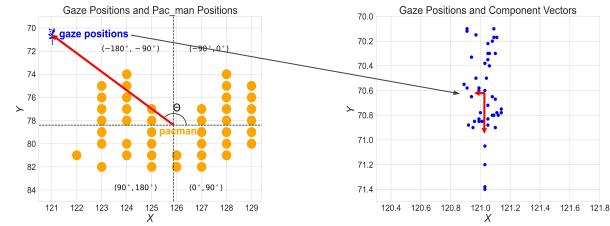
Selection:



- Ms Pac-Man games (over a set of 20 games)
- 2-hour, 'highscore' gameplay trials for training
- ~15,000 actions
- 1.7 million gaze locations

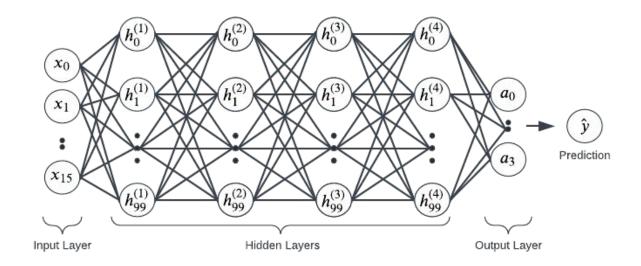
Source:




Large-scale dataset was obtained from https://zenodo.org/record/3451402 https://arxiv.org/pdf/1903.06754.pdf

Modeling approach: features extraction

Find **possible features** that impact the player's action (parameter of interest).



- 1. Mean gaze position, start position, end position relative to the Pac-Man.
 - 2. Variance, component of gaze positions
- 3. Position of Pac-Man and possible action in each frame (up, down, left, right).
- 4. Nearest ghost positions relative to the Pac-Man

Multi-layer Perceptron (MLP) Architecture

Input Layers 4 Hidden Layers containing 100 Nodes each Output Layers

Prediction

80% training, 20% test run and prediction

- 1. Normal logistic regression2.Testing Accuracy:
49% (not good)
 - 2. Sklearn multilayer neural network Testing Accuracy: 73%

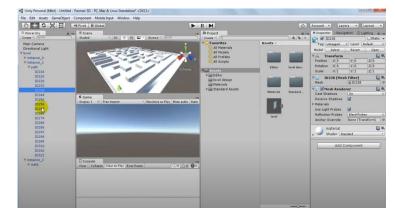
	Predicted 0	Predicted 1	Predicted 2	Predicted 3		Predicted 0	Predicted 1	Predicted 2	Predicted 3
Actual 0	426	6	69	159	Actual 0	458	56	80	66
Actual 1	165	62	425	91	Actual 1	49	553	87	54
Actual 2	140	60	562	175	Actual 2	70	87	705	75
Actual 3	128	2	103	395	Actual 3	57	48	64	459

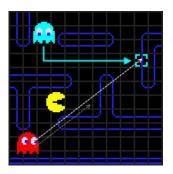
Atari-HEAD: Game images and decision-making prediction

Nicole Basinski, Nydia Chang, Danny Wan, & Jason Xing

Our model uses a single frame of a Ms Pacman game, as well as eye gaze data, to predict the next move a human might choose in an optimal setting.

To simulate eye gaze data, please click on the image where you would like the 'eye gaze' target to be. Hint: In gameplay, the human eye gaze tends to be where the player is planning to go next.




Use case & future work:

Use case:

Video Game Development

Game A.I.

Future work:

Optimize hyperparameters to increase accuracy

Include time elapsed until the human player made a decision

Incorporate modeling technique to different games

Citations

Ruohan Zhang, Calen Walshe, Zhuode Liu, Lin Guan, Karl S. Muller, Jake A. Whritner, Luxin Zhang, Mary Hayhoe, & Dana Ballard. (2019). Atari-HEAD: Atari Human Eye-Tracking and Demonstration Dataset (Version 4) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3451402

https://github.com/nicole-sb/erdos-project-2022--atari-HEAD/tree/main/Data_prediction