

Music Highway

Dataset Generation

- Crash Data (2023–2025) from Tennessee DoSHS; focus: I-40 in Madison & Henderson counties
- Raw Features: Latitude, longitude, crash severity
- Enrichment: Tagged road features (guardrails, lighting, pavement, etc.) via Google Street View

Issue: Class imbalance.

Key Findings from Exploratory Analysis

Crash Severity by Location

Feature Importance

Objective

Evaluate the impact of specific safety interventions on crash severity along I-40 in Madison and Henderson Counties.

Modeling Approach:

- Binary target: injury vs. no injury
- Held-out segment to simulate interventions
- Oversampling to balance data

Models Used

Logistic Regression for easy interpretation of feature effects.

CatBoost Classifier for handling complex categorical data efficiently.

Logistic regression model:

Classification	Report:				
	precision	recall	f1-score	support	
0	0.82	0.56	0.67	173	
1	0.24	0.53	0.33	45	
accuracy			0.56	218	
macro avg	0.53	0.55	0.50	218	
weighted avg	0.70	0.56	0.60	218	
Confusion Matr	rix:				
[[97 76]					
[21 24]]					

CatBoost Classifier:

Confusior [[74 99] [12 33]]	l	ix:			
Classific	ation	Report:			
		precision	recall	f1-score	support
	0	0.86	0.43	0.57	173
	1	0.25	0.73	0.37	45
accur	racy			0.49	218
macro	avg	0.56	0.58	0.47	218
weighted	avg	0.73	0.49	0.53	218

Hypothesis Testing

- We simulated each safety intervention by changing the relevant features in the data.
- Model predictions before and after these changes were compared to estimate impact.
- Statistical significance was tested using bootstrap resampling with 10,000 samples.
- The null hypothesis assumed interventions did not change injury rate

Evaluation Metrics

- We focused on recall to catch as many injury cases as possible.
- F1 score was used to find the best prediction threshold balancing precision and recall.
- Significance of intervention effects was confirmed using p-values and confidence intervals.

Results

Segment Details

- Segment Length: 3.26 miles
- Longitude range: (-88.663, -88.605]
- Time Period of Observation: 2023–2025
- Observed Injurious Crashes (Actual): 25

Results


```
Logistic Regression:
Mean Before = 0.836 (95% CI: 0.740 - 0.918)
Mean After = 0.027 (95% CI: 0.000 - 0.068)
p-value = 0.0000
```



```
CatBoost:
Mean Before = 0.836 (95% CI: 0.740 - 0.918)
Mean After = 0.000 (95% CI: 0.000 - 0.000)
p-value = 0.0000
```

Results

Injury Reduction Predictions					
Model	Predicted Before		Reduction		
Logistic Regression	61	2	59		
CatBoost	61	0	61		

Societal Cost of Injury (Conservative Assumption)					
Cost per Injurious Crash	\$302,600				
Prediction threshold with LR	50%				
Estimated Societal Benefit	0.5 x 59 x \$302,600 = \$8,926,700				

<u>Source: US Department of Transportation Cost-Benefit Analysis 2022</u> <u>Update</u>)

Intervention Cost Estimation						
Component	Cos	t per Mile	Segment Length	То	tal	
Guardrails	\$	626,600	3.26 miles	\$	2,042,716	
Lane Markings & Signage	\$	60,000	3.26 miles	\$	195,600	
Total Estimated Cost				\$	2,238,316	

Source:FHWA
Roadway Design

Net Benefit = \$8,926,700 - \$2,238,316 = \$6,688,384

Future Directions:

- Causal modeling
- Recognizing highway features with deep learning
- Investigating crash prevention

