![CertificateBackground.png](https://static.wixstatic.com/media/55f531_d6679d5b06e14c81ae07bacb53692d5f~mv2.png/v1/fill/w_714,h_536,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/CertificateBackground.png)
Certificate of Completion
![ErdosHorizontal.png](https://static.wixstatic.com/media/55f531_5a3b8885620c4f25b2d3edeca3ae2158~mv2.png/v1/fill/w_351,h_40,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/ErdosHorizontal.png)
THIS ACKNOWLEDGES THAT
HAS COMPLETED THE FALL 2024 DATA SCIENCE BOOT CAMP
Menglei Wang
![clear.png](https://static.wixstatic.com/media/55f531_85cf6183fce84815a730fc02df102d8c~mv2.png/v1/fill/w_147,h_147,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/clear.png)
Roman Holowinsky, PhD
December 11, 2024
DIRECTOR
DATE
TEAM
Facial Emotion Recognition
Rui Shi, Menglei Wang, Jiayi Wang, Yuting Ma
![clear.png](https://static.wixstatic.com/media/55f531_b9f3f13ce3aa4af78af2cc6d3563b81b~mv2.png/v1/fill/w_3,h_3,al_c,lg_1,q_85,enc_avif,quality_auto/clear.png)
Facial Emotion Recognition Project Outline:
• Objective:
o Build a model to classify facial expressions in images into different emotions (e.g., happy, sad, angry, surprised).
Explore techniques for handling variations in lighting, pose, and image quality.
1. Setup:
o Python environment with TensorFlow/PyTorch, etc.
o Download FER2013 or similar dataset.
2. Data Prep:
o Load and explore data.
o Preprocess: Resize, normalize, augment, split.
3. Model:
o Traditional ML models.
o CNN architecture, etc.
4. Evaluation and Refinement:
o Evaluate on test set, generate confusion matrix.
o Fine-tune hyperparameters, optimize models.
5. Handling Variations:
o Augment for lighting, pose, quality.
o Consider attention mechanisms, robust feature extraction.
6. Conclusion and Future Work:
o Summarize findings, best model, techniques.