top of page
![CertificateBackground.png](https://static.wixstatic.com/media/55f531_d6679d5b06e14c81ae07bacb53692d5f~mv2.png/v1/fill/w_714,h_536,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/CertificateBackground.png)
Certificate of Completion
![ErdosHorizontal.png](https://static.wixstatic.com/media/55f531_5a3b8885620c4f25b2d3edeca3ae2158~mv2.png/v1/fill/w_351,h_40,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/ErdosHorizontal.png)
THIS ACKNOWLEDGES THAT
HAS COMPLETED THE FALL 2024 DEEP LEARNING BOOT CAMP
Nicholas Haubrich
![clear.png](https://static.wixstatic.com/media/55f531_b9f3f13ce3aa4af78af2cc6d3563b81b~mv2.png/v1/fill/w_3,h_3,al_c,lg_1,q_85,enc_avif,quality_auto/clear.png)
Roman Holowinsky, PhD
December 18, 2024
DIRECTOR
DATE
TEAM
Subway Science
Jack Carlisle, Nicholas Haubrich
![clear.png](https://static.wixstatic.com/media/55f531_b9f3f13ce3aa4af78af2cc6d3563b81b~mv2.png/v1/fill/w_3,h_3,al_c,lg_1,q_85,enc_avif,quality_auto/clear.png)
We built and evaluated models for predicting hourly ridership of the NYC subway system, considering both the total ridership of the system and the ridership at each station. We find that an LSTM performs best for modeling the total ridership and that a CNN approach works best for the many-station case. We incorporate novel data visualization techniques to illustrate our dataset and our model's predictions.
![](https://static.wixstatic.com/media/a994932411404ef3bb797ba005125f5d.png/v1/fill/w_45,h_45,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/a994932411404ef3bb797ba005125f5d.png)
![](https://static.wixstatic.com/media/a994932411404ef3bb797ba005125f5d.png/v1/fill/w_45,h_45,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/a994932411404ef3bb797ba005125f5d.png)
![](https://static.wixstatic.com/media/a994932411404ef3bb797ba005125f5d.png/v1/fill/w_45,h_45,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/a994932411404ef3bb797ba005125f5d.png)
bottom of page