TEAM
Wunderpus Octopus (New Atlantis)
Ingrida Semenec, Kshitiz Parihar, Nadir Hajouji, Saswat Mishra, Deniz Olgu Devecioglu
Modeling the relationship between biogeochemical layers and chlorophyll density
The distribution and density of chlorophyll in the ocean are critical indicators of marine primary productivity, which influences the global carbon cycle, marine food webs, and climate regulation. Biogeochemical and physical ocean properties, including nutrient availability, light penetration, water temperature, salinity, and ocean currents influence chlorophyll density. Understanding and accurately modeling these relationships is essential for predicting the impacts of environmental changes on marine ecosystems and for managing oceanic resources effectively. We plan to combine multiple Copernicus Marine Datasets to model the chlorophyll density based on the biochemical and physical properties of the ocean.