Deep Learning Boot Camp
Spring 2026
Jan 26, 2026
-
May 1, 2026
Checking your registration status...
To access the program content, you must first create an account and member profile and be logged in.
You are registered for this program.
Registration Deadlines
Jan 21, 2026
-
Erdős members / alumni who have successfully completed a prior Erdős Data Science Boot Camp Project
-
-
Category
Advance, Supplemental, Self-Directed, Project-Based, Boot Camp
Overview
Welcome to deep learning! Each week, you'll complete assigned readings from 2 deep learning books. During the first few weeks, there will be weekly meetings with the instructors and all attendees on Zoom. As you progress more into the material and your projects, you will meet according to your group schedule.
In order to receive a deep learning certificate, you must submit a (team-based) final project by the end of the cohort.

Click here to be invited to the slack organization: The Erdős Institute
Click here to access the slack cohort channel: #slack-cohort-channel
Click here to access the slack program channel: #slack-program-channel
Click here to download the Events & Deadlines .ics calendar file
Organizers, Instructors, and Advisors
Marcos Ortiz
Lead Deep Learning TA
Office Hours:
As Needed
Email:
Preferred Contact:
Slack
Lindsay Warrenburg
Associate Director of Erdős
Office Hours:
As Needed
Email:
Preferred Contact:
Slack
Slack is the best way to contact me!
Objectives
- Learn the basics of deep learning
- Understand how deep learning is used in industry
- Feel comfortable with deep learning code (PyTorch and FastAI)
Project Examples
TEAM 12
Fraud Detection with Deep Learning
Jude Pereira, Yang Yang, Adrian Wong, Sara Edelman-Munoz, Mary Reith

Fraud detection is a critical area where deep learning has been effectively applied to identify and prevent unauthorized transactions, money laundering, and other financial crimes. Traditional rule-based systems and statistical models often struggle to detect sophisticated fraud patterns, particularly when dealing with large volumes of data and rapidly evolving fraud techniques. In contrast, deep learning models, such as CNNs, RNNs, and autoencoders, have proven highly effective in analyzing complex, high-dimensional transaction data and detecting subtle, non-linear patterns indicative of fraudulent activity.
In this project, we build a User ID-based fraud detection model using autoencoders, trained on unlabelled real-world credit card transaction data, capable of detecting fraud with a precision of up to 35% and a recall of up to 72%, performing significantly better than traditional ML/statistical baseline models..
First Steps/Prerequisites
Program Content
I'm a paragraph. Click here to add your own text and edit me. It's easy.
Course materials are available on github through the following link:
github message for user
Textbook/Notes
Note: our video player does not support playback speed options. You can find a third party browser extension which will allow you to modify video playback speed. For example, this one works for Chrome: video-speed-controller. If you would prefer to avoid a browser extension you can manually modify the playback speed in the javascript console as well: Speed up any HTML5 video player!
Schedule
Click on any date for more details
Phase 1 - Instruction and Project Completion: Feb 02 - Mar 20, 2026
Project Review & Judging: Mar 23 - Mar 26, 2026
Phase 2 - Intense Interview Prep & Career Connections: Mar 27 - May 1, 2026
Deep Learning Orientation
Jan 30, 2026 at 09:00 PM UTC
EVENT
Deep Learning Lesson 2
Feb 9, 2026 at 09:00 PM UTC
EVENT
Deep Learning Lesson 3
Feb 23, 2026 at 09:00 PM UTC
EVENT
Deep Learning Check-in Day
Mar 6, 2026 at 09:00 PM UTC
EVENT
Deep Learning Lesson 6
Mar 16, 2026 at 08:00 PM UTC
EVENT
Deep Learning Phase 2 Orientation
Mar 30, 2026 at 08:00 PM UTC
EVENT
Deep Learning Computer Set-up Day & Lesson 1
Feb 2, 2026 at 09:00 PM UTC
EVENT
Deep Learning Check-in Day
Feb 13, 2026 at 09:00 PM UTC
EVENT
Deep Learning Check-in Day
Feb 27, 2026 at 09:00 PM UTC
EVENT
Deep Learning Lesson 5
Mar 9, 2026 at 08:00 PM UTC
EVENT
Deep Learning Final Check-in Day
Mar 20, 2026 at 08:00 PM UTC
EVENT
Deep Learning Project Pitch Day
Feb 6, 2026 at 09:00 PM UTC
EVENT
Deep Learning Check-in Day
Feb 20, 2026 at 09:00 PM UTC
EVENT
Deep Learning Lesson 4
Mar 2, 2026 at 09:00 PM UTC
EVENT
Deep Learning Check-in Day
Mar 13, 2026 at 08:00 PM UTC
EVENT
Deep Learning Project Showcase
Mar 27, 2026 at 08:00 PM UTC
EVENT
Project/Homework Deadlines
Jan 31, 2026
04:59 AM UTC
Last chance to switch bootcamps
Email Amalya Lehmann at amalya@erdosinstitute.org if you would like to switch to a different bootcamp.
Feb 11, 2026
10:00 PM UTC
Deep Learning Teams and Project Topics Due
Submit on the course website AND slack
Feb 12, 2026
04:59 AM UTC
Last day to defer enrollment to a future cohort
Contact Amalya Lehmann (amalya@erdosinstitute.org) if you would like to unenroll from this cohort and defer to a future cohort.
Mar 20, 2026
09:00 PM UTC
Deep Learning Final Project Due
Final Project



